• Login
    View Item 
    •   Home
    • Master's Programs
    • Master of Science in Energy Engineering
    • View Item
    •   Home
    • Master's Programs
    • Master of Science in Energy Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Investigating The Best Statistical Lifetime Model for Commercial Lithium-Ion Batteries

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Investigating-the-Best-Statist ...
    Size:
    1.620Mb
    Format:
    PDF
    Download
    Type
    Thesis
    Author
    Mouais, Talal Ali
    Supervisor
    Kittaneh, Omar
    Abdulmajid, Mohammed
    Subject
    Renewable Energy
    Energy storage
    Li-ion
    Lifetime
    Reliability
    Weibull distribution
    Date
    2021
    
    Metadata
    Show full item record
    Abstract
    One of the significant drawbacks of renewable energy is that renewable energy sources such as solar and wind are intermittent and operate with different degrees of intermittency. In other words, they only generate power when the sun is shining or when the wind is blowing. One of the most promising methods of overcoming the problem intermittent renewable energy supplies is the use batteries that can store renewable energy until it is needed. Batteries are known for their high commercial potential, fast response time, modularity, flexible installation, and short construction cycles. Consequently, the battery is an attractive option for storing renewable energy and peak shaving during intensive grid loads, and it can serve as a back-up system to control voltage drops in the energy grid. The lithium-ion battery is regarded as one of the most promising battery technologies because it has a high specific energy density, a high volumetric energy density, a low and falling cost, and a long lifetime. The failure mechanism of the Li-ion battery is a highly complex phenomenon produced by a complex interplay of many physical and chemical mechanisms. Three main approaches are used to modeling the lifetime of batteries: the physics-based model (Electrochemical modeling); the half empirical model (statistical methods), which is based on conducting and analyzing battery aging experiments; and the data-driven model, which is based on numerous battery aging experiments that require data analysis and machine learning. This study employs the statistical method to understand and uncover hidden failure interactions inside the cell. It is used here because of its relative simplicity. Based on Accelerated lifetime data of Li-ion adapted from [10], we examine the fitting of three lifetime distributions; the Weibull, lognormal and normal distributions. We conclude that the lognormal distribution is the best lifetime model for Li-ion batteries. Also, this study shows that the electrode physical parameters, such as thickness, play an important role in the lifetime model of Li-ion battery.
    Publisher
    Effat University
    Collections
    Master of Science in Energy Engineering

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.