• Login
    View Item 
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Book Chapters
    • View Item
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Book Chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    A deep learning approach for COVID-19 detection from computed tomography scans

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Varshney, Ashutosh
    Subasi, Abdulhamit cc
    Subject
    COVID-19
    Deep Learning
    Transfer Learning
    Convolutional Neural Networks (CNN)
    Date
    2023-01-20
    
    Metadata
    Show full item record
    Abstract
    The classification of COVID-19 patients from chest computed tomography (CT) images is a very difficult task due to the similarities observed with other lung diseases. Based on various CT scans of COVID and non-COVID patients, the aim of this chapter is to propose a simple deep learning architecture and compare its diagnostic performance using transfer learning and several machine learning techniques that could extract COVID-19’s graphical features and classify them in order to provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control. We also compare our approach and show that it outperforms various previous state-of-the-art techniques. We propose a deep learning architecture for transfer learning that is just a simple modification of eight new layers on the ImageNet pretrained convolutional neural networks (CNNs) which yielded us the best test accuracy of 98.30%, F1 score of 0.982, area under the receiver operating characteristic (ROC) curve of 0.982, and kappa value of 0.964 after training. Moreover, we use the proposed architecture for feature extraction and study the performance of various classifiers on them and were able to obtain the highest test accuracy of 91.75% with K-nearest neighbors. Also, we compare multiple CNNs and machine learning models for their diagnostic potential in disease detection and suggest a much faster and automated disease detection methodology. We show that smaller and memory efficient architectures are equally good compared to deep and heavy architectures at classifying chest CTs. We also show that visual geometry group (VGG) architectures are overall the best for this task.
    Department
    Computer Science
    Publisher
    Academic Press
    Book title
    Applications of Artificial Intelligence in Medical Imaging.
    DOI
    https://doi.org/10.1016/B978-0-443-18450-5.00011-6
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1016/B978-0-443-18450-5.00011-6
    Scopus Count
    Collections
    Book Chapters

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.