• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Undergraduate works
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Undergraduate works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Muscle to Machine: Surface Electromyography for a Robot Control

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    FinalReport-Capston2EMG.pdf
    Size:
    20.39Mb
    Format:
    PDF
    Download
    Type
    Capstone
    Author
    Alzubaidi, Jawharah A.
    Supervisor
    Salem, Nema
    Subject
    SEMG
    Arm
    Robot
    
    Metadata
    Show full item record
    Abstract
    During muscle activation, the surface Electromyography, sEMG, electrical signal is produced from small electrical currents generated by the exchange of ions across the muscle membranes and detected by electrodes. During a muscular activity, the brain sends excitation signals through the nervous system to a group of motor units which are the junction points between the neuron and the muscle fibers. As a result, each motor unit produces a ‘Motor Unit Action Potential’ (MUAP). This process is, continuously, repeated as long as the muscle is required to generate a force, producing a train of action potentials. The trains from concurrently active motor units superimpose to produce the resultant EMG signal. A group of muscles are involved in a certain movement of the human body. For a specific activity, there is a direct proportionality between the number of muscles, force, excitation from the nervous system, number of motor units, and firing rate. The bioelectric EMG signal has a wide range of applications such as a diagnostic and evaluation tool for neurological disorders, low back pain, physiotherapy, rehabilitation, sports, biofeedback and ergonomics research. Recently, EMG has found its use in the robotics field. A robotic mechanism can be effectively controlled by an EMG signal. The advances in electronics and microcontroller technology such as filtration, rectification, and amplification, improved the control options for robotic mechanisms. In this sense, we propose a design and implementation of an EMG data acquisition system with the Myoware device and a microcontroller. This thesis discusses, in detail, the effective use of sEMG as a tool for controlling a robotic hand. A detailed elaboration of the electrode types, signal acquisition technique, electronics circuit design considerations and the control procedure to drive electric motors in a robotic hand is provided. The MATLAB is used to analyze the acquired non-invasive signal.
    Department
    Electrical and Computer Engineering
    Publisher
    Effat University
    Sponsor
    -
    Collections
    Undergraduate works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.