• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Undergraduate works
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Undergraduate works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Machine Learning based Theft Detection by Processing the Smart Meter Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Machine-Learning-based-Theft-D ...
    Size:
    2.492Mb
    Format:
    PDF
    Download
    Type
    Capstone
    Author
    AlOlyan, Hala
    Supervisor
    Mian Qaisar, Saeed
    
    Metadata
    Show full item record
    Abstract
    The intentional and illegal use of electricity by various means is referred to as energy theft. Several studies have been conducted using machine learning methods to detect energy theft in advanced metering infrastructure. However, there is a problem with using machine learning for energy theft detection in that it is difficult to obtain enough electricity theft data to train a machine learning model. In this paper, we propose a method for detecting electricity theft in data streams generated by smart meters that are based on anomaly pattern detection. To train the model, the proposed method requires only normal energy consumption data. Previous usage records of customers being monitored are not required for detecting energy theft. This feature makes the proposed method applicable in real-world situations. The significance of the present study relies on collecting and analyzing existing papers to find the exact energy usage records for each customer, develop an algorithm to helps reduce theft detection, implementing a machine-learning algorithm to identify the type of electricity theft behaviors and their properties, and compare between different methods used for theft detection. The significance of the project is that power consumption increases each year, the power generation and distribution industry grow, and the need for technologies to reduce power loss is increasing. Energy theft refers to the intentional and illegal usage of electricity by various means. Therefore, a smart meter is installed in a customer-filled area. Making it nearly difficult for unauthorized individuals to tamper with it. Moreover, to follow the SDG (Sustainable Development Goals) goals the 12th and 16th goals. The 12th goal states, “Responsible Consumption and Production”, and the 16th goal states “Peace, Justice, and Strong Institutions”. Also, according to vision 2030, Prince Mohammad bin Salman stated that the industry will grow, and the power will reduce. The suggested methodology is machine learning and processing the smart meter data. Experiments were carried out using real smart meter data and artificial attack data, including the standardization of daily consumption vectors, the construction of an outlier detection model on normal electricity consumption data of randomly selected customers, and the application of anomaly pattern detection on test data streams.
    Department
    Electrical and Computer Engineering
    Publisher
    Effat University
    Collections
    Undergraduate works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.