Show simple item record

dc.contributor.authorSenan, Nermean
dc.contributor.authorTayachi, Tahar
dc.contributor.authorBenSaïda, Ahmed
dc.date.accessioned2023-02-17T12:16:11Z
dc.date.available2023-02-17T12:16:11Z
dc.date.issued2022-11
dc.identifier.doi10.6000/1929-7092.2022.11.04en_US
dc.identifier.urihttp://hdl.handle.net/20.500.14131/450
dc.description.abstractThis study assesses the credit risk of small and medium-sized enterprises (SMEs) to minimize unexpected risk events. We construct a hybrid statistical model based on factor analysis and logistic regression to predict enterprise default on loans and determine the factors predicting SMEs default. We assess the credit risk of SMEs listed on the Saudi stock market. The results indicate that the SMEs acid-test ratios are the most influential factors in predicting SMEs credit risk. Therefore, the designed logistic model can be used by financial institutions during the decision-making process of granting loans to SMEs. This study sheds light on challenging access to bank credits due to the lack of financial transparency of most Saudi SMEs.en_US
dc.titleModeling SMEs Credit Default Risk: The Case of Saudi Arabiaen_US
dc.source.journalJournal of Reviews on Global Economicsen_US
dc.source.volume11en_US
refterms.dateFOA2023-02-17T12:16:12Z
dc.contributor.researcherExternal Collaborationen_US
dc.subject.KSAEntp&Innoven_US
dc.contributor.alumnae1en_US
dc.source.indexScopusen_US
dc.contributor.departmentFinanceen_US
dc.contributor.pgstudent1en_US
dc.contributor.firstauthorSenan, Nermean


Files in this item

Thumbnail
Name:
10.6000.1929-7092.2022.11.04.pdf
Size:
2.151Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record