Enhanced oil recovery by nanoparticles ?ooding: From numerical modeling improvement to machine learning prediction
Type
ArticleSubject
Enhanced oil recoveryNanoparticles
Machine learning
Random forest
Artificial neural networks
Decision tree
Gradient boosting regression
Date
2021
Metadata
Show full item recordAbstract
Nowadays, enhanced oil recovery using nanoparticles is considered an innovative approach to increase oil production. This paper focuses on predicting nanoparticles transport in porous media using machine learning techniques including random forest, gradient boosting regression, decision tree, and arti?cial neural networks. Due to the lack of data on nanoparticles transport in porous media, this work generates arti?cial datasets using a numerical model that are validated against experimental data from the literature. Six experiments with different nanoparticles types with various physical features are selected to validate the numerical model. Therefore, the researchers produce six datasets from the experiments and create an additional dataset by combining all other datasets. Also, data preprocessing, correlation, and features importance methods are investigated using the Scikit-learn library. Moreover, hyperparameters tuning are optimized using the GridSearchCV algorithm. The performance of predictive models is evaluated using the mean absolute error, the R-squared correlation, the mean squared error, and the root mean squared error. The results show that the decision tree model has the best performance and highest accuracy in one of the datasets. On the other hand, the random forest model has the lowest root mean squared error and highest R-squared values in the rest of the datasets, including the combined dataset.Department
Electrical and Computer EngineeringJournal title
Advances in Geo-Energy Researchae974a485f413a2113503eed53cd6c53
10.46690/ager.2021.03.06
Scopus Count
Collections
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/