• Login
    View Item 
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Artificial Intelligence in Brain Computer Interface

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Subasi, Abdulhamit cc
    Subject
    Artificial intelligence (AI)
    Bagging
    Adaboost
    Machine Learning
    EEG
    Motor imagery (MI)
    Brain Computer Interface
    Date
    2022-06-09
    
    Metadata
    Show full item record
    Abstract
    A brain-computer interface (BCI) is a connection path among brain and an external device. Motor imagery (MI) is proven to be a useful cognitive technique for enhancing motor skills as well as for movement disorder rehabilitation therapy. It is known that the efficiency of MI training can be enhanced by using BCI approach, which provides real-time feedback on the mental attempts of the subject. Artificial intelligence (AI) methods play a key role in detecting changes in brain signals and converting them into appropriate control signals. In this paper, we focus on brain signals that have been obtained from the scalp to control assistive devices. In addition, signal denoising, feature extraction, dimension reduction, and AI techniques utilized for EEG-based BCI are evaluated. Moreover, Bagging and Adaboost are utilized to classify MI task for BCI using EEG signals. Different classifiers are used to enhance the performance of detecting the signals from the brain and make it on the real time and controlling any lateness. MI related brain activities can be categorized efficiently via AI techniques. This paper utilizes wavelet packet decomposition feature extraction approach to improve MI recognition accuracy. The proposed approach classifies MI-related brain signals using ensemble techniques. The results show that the proposed framework surpasses the traditional machine learning approaches. Furthermore, the proposed Adaboost with k-NN ensemble approach also yields a greater performance for MI classification with 94.57% classification accuracy for subject independent case.
    Department
    Computer Science
    Publisher
    IEEE
    DOI
    10.1109/HORA55278.2022.9800002
    ae974a485f413a2113503eed53cd6c53
    10.1109/HORA55278.2022.9800002
    Scopus Count
    Collections
    Conference Papers

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.