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Abstract: Purpose: This review aims to explore the clinical and research applications of

artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), in

understanding, predicting, and managing obesity. It assesses the use of AI tools to identify

obesity-related risk factors, predict outcomes, personalize treatments, and improve health-

care interventions for obesity. Methods: A comprehensive literature search was conducted

using PubMed and Google Scholar, with keywords including “artificial intelligence”, “ma-

chine learning”, “deep learning”, “obesity”, “obesity management”, and related terms.

Studies focusing on AI’s role in obesity research, management, and therapeutic interven-

tions were reviewed, including observational studies, systematic reviews, and clinical

applications. Results: This review identifies numerous AI-driven models, such as ML

and DL, used in obesity prediction, patient stratification, and personalized management

strategies. Applications of AI in obesity research include risk prediction, early detection,

and individualization of treatment plans. AI has facilitated the development of predictive

models utilizing various data sources, such as genetic, epigenetic, and clinical data. How-

ever, AI models vary in effectiveness, influenced by dataset type, research goals, and model

interpretability. Performance metrics such as accuracy, precision, recall, and F1-score were

evaluated to optimize model selection. Conclusions: AI offers promising advancements

in obesity management, enabling more personalized and efficient care. While technology

presents considerable potential, challenges such as data quality, ethical considerations, and

technical requirements remain. Addressing these will be essential to fully harness AI’s

potential in obesity research and treatment, supporting a shift toward precision healthcare.

Keywords: artificial intelligence; machine learning; obesity; deep learning; risk prediction;

precision medicine

1. Introduction

Obesity poses a significant global health challenge due to its association with various

morbidities [1,2]. Despite being commonly measured by body mass index (BMI), obesity is
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a complex condition influenced by genetic, behavioral, and environmental factors. Obesity

is a leading cause of preventable mortality, necessitating significant social resources in both

high and low- to middle-income countries [3,4]. In 2014, the World Health Organization

(WHO) reported that approximately 1.9 billion individuals were overweight and over

600 million were obese. By 2030, projections indicate that 2.16 billion individuals will be

overweight and nearly 1.2 billion will be obese. Therefore, a substantial portion of the

global population faces increased risks of various health complications associated with

excess weight [5,6].

Numerous research studies have highlighted the multifaceted nature of obesity, in-

dicating that it is not simply a matter of excess weight but rather a complex health issue

influenced by a variety of factors. These factors include individual factors such as genetics,

learned behaviors, and broader societal and cultural influences such as unhealthy eating

habits. While genetic and epigenetic factors contribute to obesity, lifestyle choices are a

major contributor [7,8]. Factors such as low physical activity and poor dietary habits are

known to heavily influence the development and progression of obesity [9].

Moreover, obesity is intricately linked to the exacerbation of pre-existing health con-

ditions and the onset of new health-related issues. Various forms of obesity, including

abdominal obesity, have been associated with an increased risk of chronic diseases such as

asthma, cancer, diabetes mellitus, hypercholesterolemia, and cardiovascular diseases. Fur-

thermore, obesity impacts several organ systems, including the cardiovascular, endocrine,

central nervous, and gastrointestinal systems [10–12].

Artificial intelligence (AI) is revolutionizing medicine in many aspects, including

diagnosis, treatment, and operational efficiency [13]. AI methods, such as machine learn-

ing (ML) and deep learning (DL), are commonly applied across the healthcare sector for

research and treatment [14]. These techniques are pivotal in disease prediction, detection,

and patient risk stratification. In obesity, AI models leverage diverse data modalities,

which include encompassing anthropometric measurements, environmental parameters,

geographical contexts, educational backgrounds, clinical profiles, genetic biomarkers, and

epigenetic signatures, and untangle the complexity of big data to assist healthcare providers

in formulating personalized management strategies and tailored treatment plans [14]. This

strategy is already used in cancer, where AI models can recommend the best therapy com-

binations based on the patient’s tumor characteristics [15]. The use of AI is revolutionizing

obesity treatment by enabling personalized healthcare strategies. Moreover, AI facilitates

continuous monitoring and adaptive feedback, leverages wearable technology for real-time

recommendations, and addresses psychological aspects through customized behavioral

interventions [16].

Despite the potential benefits, ethical considerations, such as data privacy, must be

carefully managed to ensure patient safety and confidentiality. While challenges exist, the

integration of AI holds immense potential in reshaping obesity management paradigms.

Through its capacity to process diverse data sources and provide personalized solutions, AI

stands to revolutionize healthcare delivery in the fight against obesity. By addressing the

systemic nature of the condition and offering tailored interventions, AI provides hope for

improving patient outcomes and mitigating the global burden of obesity-related diseases

(Figure—graphical abstract).

2. Methodology

A comprehensive review was undertaken of recent literature using PubMed and

Google Scholar, with keywords such as “artificial intelligence”, “machine learning”, “deep

learning”, “obesity”, “obesity management”, and related phrases. The search focused

on observational studies, systematic reviews, and clinical applications to investigate AI’s
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potential involvement in obesity research, management, and therapeutic interventions.

AI integration with anti-obesity medication, bariatric surgery, and behavioral or lifestyle

changes were among the main areas of focus. This study intended to address the following

questions: how might AI, specifically ML and DL, be used to understand better, predict,

and manage obesity? What are the existing AI-driven models for obesity prediction and

management, and how effective are they? What are the future directions, recommendations,

and the problems and limitations of applying artificial intelligence to obesity research and

management? How can AI be applied to clinical practice to improve obesity management?

The findings regarding the effectiveness of various machine learning and deep learning

models in predicting and managing obesity have typically been organized into tables

for clarity.

3. Classification of Obesity

Obesity is often categorized based on BMI; a measure of body fat derived by dividing

a person’s weight into kilograms by their height in square meters. The WHO and the

National Institutes of Health (NIH) classify BMI into three classes. Class I obesity (BMI:

30.0–34.9 kg/m2) is defined by a moderate amount of excess body fat, increasing the risk of

obesity-related disorders such as type II diabetes mellitus, hypertension, and cardiovascular

disease [17]. Class II obesity (BMI: 35.0–39.9 kg/m2) is characterized by more excess

body fat than class I obesity, which puts them at a greater risk for obesity-related health

problems [18], and class III obesity (BMI ≥ 40.0 kg/m2) substantially increases the risk of

serious health issues such as type II diabetes mellitus, heart disease, stroke, sleep apnea,

and cancer [18]. Overweight or obesity in children and adolescents is classified according

to BMI percentile, with overweight BMI ranging from 85 to 95 percentile, obese BMI larger

than 95 percentile, and severely obese BMI greater than or equal to 120% of the 95 percentile.

Childhood obesity can result in a range of short- and long-term health concerns, including

type II diabetes, CVD, sleep apnea, joint problems, and psychosocial issues [19].

Although BMI is a widely used metric to categorize obesity, it fails to accurately

reflect changes in the distribution of fat or body composition. Therefore, a complete

picture of obesity can be obtained by incorporating additional parameters and tools such

as the waist–hip ratio, body fat percentage, skinfold thickness measurement, hydrostatic

weighing, air displacement plethysmography, body volume index, bioelectrical impedance

analysis, and medical history. These factors led to the following categories of obesity:

central or visceral obesity; an “apple-shaped” body; fat mainly around the abdomen [20];

gynoid (peripheral or subcutaneous) obesity; “pear-shaped” figure; extra fat primarily in

the hip and thigh areas ; visceral fat obesity; the buildup of fat around essential organs,

including the pancreas, liver, and intestines inside the abdominal cavity (excessive visceral

fat is linked to inflammation, insulin resistance, and a higher risk of heart disease, type II

diabetes mellitus, and cancer) [21]; subcutaneous fat obesity; the buildup of fat just below

the skin’s surface, usually in the abdomen, hips, thighs, and buttocks; and mixed (central

and peripheral) obesity. A combination of peripheral (gynoid) and central (android) fat

distribution patterns characterizes mixed obesity. People who have mixed obesity may

have fat accumulation in both the abdomen and hip/thigh areas, displaying traits of both

android and gynoid obesity. Compared to isolated forms of obesity, this type may carry a

greater risk of metabolic complications [20,22].

4. Obesity Paradox

The term “obesity paradox” refers to the surprising discovery that, in certain groups,

people who are obese may have better results than those who are normal weight or under-

weight, especially in the setting of certain chronic diseases or emerging health issues, such
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as heart failure and surgery [23]. This effect was first detected in cardiovascular disease

studies [23], where researchers discovered that obese people died at a lower rate than those

who were normal weight or underweight. Similar findings were observed in a variety

of chronic conditions, including chronic renal disease, heart failure, and some forms of

cancer [24–26]. These findings may challenge conventional wisdom about the hazards of

obesity; they should not overshadow the well-established links between obesity and a

variety of chronic disorders, nor should they discourage efforts to prevent and cure obesity.

5. Artificial Intelligence

Artificial intelligence describes developing computer systems that can carry out tasks

that require human intelligence. After initial programming, nonhuman technologies with

AI can learn and operate independently. Based on learned data inputs, these devices

execute adaptive tasks and function with increasing degrees of autonomy from direct

human direction. ML is an essential component of AI that improves machine performance

by exposing it to cumulative data inputs. ML algorithms predict patient outcomes, screen

radiology images, make personalized treatment strategies, and detect illnesses [27].

Machine learning and deep learning algorithms were first developed in the 1950s, ini-

tially sparking enthusiasm but remaining inactive for many decades [28]. The development

of AI can be divided into two stages: symbolic AI (i.e., good old-fashioned AI) and modern

AI (i.e., machine learning AI). The 1950s to 1980s were known as the era of symbolic AI,

which attempted to imitate human-level intelligence by manually building massive sets of

explicit rules to deal with knowledge. Symbolic AI solves clearly defined, logical problems

such as rule-based inquiries and response systems. For example, A symbolic AI-based

medical diagnostic system leverages a knowledge base of explicitly defined rules to infer

and deduce plausible diagnoses from the symptoms reported by a patient. For instance,

the system may employ a rule that states: IF the patient exhibits a fever, a cough, and

difficulty breathing, THEN the patient may be suffering from pneumonia. This rule-based

reasoning allows the system to logically analyze the presented evidence and determine

potential medical conditions affecting the patient. The advantages of this system are the

interpretability of the results and the logic behind the results can be traced. Still, it struggles

with more complex, ambiguous jobs such as image categorization, speech recognition, and

translation [29]. With the re-emergence of advanced computational power, ML and DL

have experienced a resurgence in popularity compared to symbolic AI [28].

Machine learning has several advantages over traditional statistical methods. ML is a

model-free philosophy that does not require prior statistical assumptions. The model can

deal with non-linear and colinear data and handle sparse and high-dimensional data with

high prediction ability. Furthermore, ML trains on part of the data (training dataset) and

tests its performance on another part (testing dataset). This process makes out-of-sample

prediction for ML algorithms high compared to traditional statistical methods, which are

prone to overfitting. Dealing with non-structure data (medical images, words, multimedia)

is another advantage of ML [30,31].

ML algorithms have three main subcategories (supervised, unsupervised, and re-

inforcement learning) (Figure 1). Unsupervised ML involves analyzing and clustering

unlabeled datasets to uncover hidden patterns or groupings. Its ability to identify simi-

larities and differences in data makes it particularly useful for exploratory data analysis.

Unsupervised ML models are employed for clustering and dimensionality reduction tasks.

On the other hand, supervised ML uses a training set containing input–output pairs to teach

the algorithm to learn a function that maps inputs to outputs. The key distinction between

supervised and unsupervised ML is that the former requires labeled data (input–output

pairs), while the latter only requires inputs (unlabeled data). Supervised ML models are
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utilized for tasks such as classification, which involves assigning data to specific categories

(e.g., diabetic or nondiabetic), and regression, which entails learning the relationship be-

tween input features and continuous outcomes, such as BMI. Reinforcement learning is

currently integrated into robotics engineering, and its application in medical research has

yet to be well-developed [30].

 

∗
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Figure 1. Machine learning algorithm and subcategories.

Deep learning has the potential to deal with images (convolutional neural networks

(CNNs), process words (recurrent neural networks (RNNs)), and generate images (genera-

tive adversarial networks) (Figure 2).
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Figure 2. Deep learning algorithm and subcategories.

6. Machine Learning Steps

Almost all supervised ML or DL models involve similar steps for practical use in

healthcare research and treatment to improve patient outcomes and decision-making pro-

cesses. These steps are defining objectives (clearly define the research question or clinical

problem you want to address, such as disease diagnosis, prognosis prediction, or treatment

recommendation), data collection (gather relevant healthcare data from sources such as

electronic health records (EHRs), medical imaging, genetic databases, or clinical trials),

data preprocessing (clean the data, handle missing values, normalize features, and encode

categorical variables to prepare for modeling), split data (divide the dataset into training

and testing sets to train and evaluate the model’s performance), training the model (use

the training data to train the respected model, adjusting hyperparameters, cross-validating

the model), validating the model (assess the model’s performance on the testing data using

metrics such as accuracy “the proportion of correct predictions out of the total number

of predictions”, precision “True positive (TP)/(TP + false positive(FP))”, recall “TP/(TP

+ false negative (FN))”, area under the receiver operator curve (aucROC) “model’s abil-

ity to distinguish between positive and negative classes” and F1-score “2* (Precision ∗

Recall)/(Precision + Recall”), interpreting results (analyze feature importance to under-

stand which variables influence predictions and gain insights into disease mechanisms or
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treatment responses using explainable AI methods), deploying the model (if the model

performs well, deploy it in clinical settings to assist healthcare professionals in decision-

making), and monitoring and updating (continuously monitor the model’s performance

and update it as needed with new data or changes in healthcare practices) (Figure 3) [30].

 

ff

ff

ff

tt

Figure 3. Steps involved in machine learning model generation, testing, and deployment.

7. Artificial Intelligence in Obesity and Associated Risk Prediction

As the overweight and obesity rates increase, there is a growing need for computa-

tional tools to predict obesity to aid individuals in managing their daily meal planning

routines effectively. To address obesity in its early stages, researchers and healthcare profes-

sionals are utilizing abundant datasets on obesity collected from various channels, such

as electronic medical records, insurance databases, and mobile apps. Analyzing these

data allows for extracting valuable insights aimed at preventing and managing obesity at

an early phase [32,33]. Healthcare and researchers utilize various approaches to develop

diagnostic and prognostic predictive models for biomedical applications, harnessing the

high potential of ML or DL [34,35].

Numerous studies have employed ML or DL techniques to predict obesity using di-

verse datasets. We endeavored to comprehensively discuss the most significant and pivotal

studies where ML or DL was applied in predicting obesity across various parameters,

identifying the most appropriate models for different types of obesity research. In 2015,

Dugan and colleagues assessed various ML models to determine the most effective model

for predicting the onset of obesity in early childhood [34]. In this study, six models, namely,

random tree, random forest, Iterative Dichotomiser 3 (ID3), J48, naive Bayes, and Bayes

net, were utilized to construct a clinical dataset of a pediatric clinical decision support

system named CHICA (Child Health Improvement via Computer Automation) [34,36].

The authors examined 167 attributes collected before a child’s second birthday for each

patient. The authors evaluated the models’ accuracy using sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV), and overall accuracy. Among the

six models, the random tree and ID3 models were the most sensitive for predicting obesity.

The most influential feature observed was being overweight before age two, especially if

the child was not overweight before their first birthday but became overweight between
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one and two years old. Additionally, protective factors such as being very tall before six

months and influential factors such as not being overweight before two years but using

a walker and being white were also identified. This study provides valuable insights

for clinicians in delivering targeted interventions during critical developmental stages,

potentially preventing the onset of obesity.

In another study, Allen and collaborators investigated the interaction effect of ecosys-

tems on the development of obesity in adolescents [37]. In this study, the authors ex-

plored the interaction features of a complex multilevel environment that reinforces obe-

sity/obesogenic behaviors through random forest ML models to predict obesity in young

people. In this study, the authors used data from the ABCD study (https://abcdstudy.org),

which was collected from 22 different sites in the USA. The primary outcomes of this

study were age- and sex-adjusted waist-to-height ratio z scores. The investigators used

120 features as predictors of each child’s waist-to-height ratio. The study used an explain-

able AI approach, which helps to discover the interaction between obesogenic features

of the multiple environments that youth navigate. The analysis revealed that children

from less educated households had higher waist-to-height ratio z scores when living in

neighborhoods with fewer adults holding high school diplomas. Similarly, those from

low-income homes showed elevated z scores in areas with higher poverty rates. Addition-

ally, children in low-income households had higher z-scores if their neighborhoods had

lower particle pollution levels. Children residing in low-income neighborhoods exhibited

higher waist-to-height ratio z-scores if they engaged in less than 23 min of sports per week.

Furthermore, children in communities with a low proportion of adults holding high school

diplomas had higher z-scores if they lived in areas with high median home values. In

contrast, those in neighborhoods with a high percentage of households below the poverty

line had elevated z-scores if they resided in areas with numerous single-parent households.

Kaur and coworkers investigated the application of ML to predict obesity risk and plan

meals to reduce obesity. They utilized various ML algorithms, including gradient boosting

(GB), bagging meta-estimator (BME), XGBoost (XGB), random forest, SVM, and K-nearest

neighbor (KNN) [38]. Their dataset, sourced from the UCI Machine Learning repository,

contained features such as physical descriptions, meal calorific values, and eating habits.

Across different training and testing ratios (90:10, 80:20, 70:30, and 60:40), they found that

GB achieved the highest accuracy (98.11%) at a 90:10 ratio. At an 80:20 ratio, GB and XGB

showed similar accuracy levels (97.87% and 97.79%, respectively). Additionally, the SVM

and KNN algorithms performed poorly compared to the other algorithms, with a consistent

trend of accuracy observed across all ratios.

Furthermore, several studies have used genetic variation in the prediction of obesity

or obesity risk using the ML or DL method. In 2018, Wang and collaborators utilized

genetic variations identified through next-generation sequencing (NGS) to predict obesity

risk by employing ML models such as SVMs, KNNs, and decision trees. Their study

incorporated 139 single nucleotide polymorphisms (SNPs) alongside age and sex data.

They employed multivariate logistic regression to assess the importance of these selected

features. By employing stepwise multivariate logistic regression, they identified nine SNPs

for designing obesity prediction models using ML techniques. The SVM model emerged

as the most effective classifier, achieving notable performance metrics: 70.77% accuracy,

80.09% sensitivity, and 63.02% specificity. This investigation underscores the efficacy of the

selected SNPs in detecting obesity risk, highlighting the potential of ML-based methods for

preliminary analyses of genetic predispositions to obesity [39]. We summarize the literature

on ML and DL models to predict obesity or related factors in Table 1.

https://abcdstudy.org
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Table 1. Summary of studies that used machine learning and deep learning models to predict obesity

and related risk factors.

Authors Objective
ML or DL Models Tested and
Dataset Used

Outperformed Model

Almeida et al. [40]

It aimed to develop and
validate predictive models
for percentage body fat
based on anthropometric
data other than skinfold
thickness.

NN and MLM compared with
various previous studies.
Data from 3084 pre-pubertal
children.
NN excels in classifying ‘normal’
and ‘obese’ categories; however,
significant differences appeared
in the following: under fat—NN
(18.8%) vs. MLM (43.1%);
overfat—NN (56.7%) vs. MLM
(58.7%).

Carvalho et al. [41]

ML in Mission Kids can
create a knowledge base by
analyzing workout data to
recognize effective
performance, aiding in
combating childhood
obesity through
personalized feedback and
tailored exercise
recommendations.

DT (J48), RF, and MLP.
Data: 30 children who performed
various physical exercises.
Average classification accuracy
rate for various exercises.
DT: 91.52%.
RF: 92.95.
MLP: 74.76.

RF outperformed in the
evaluation of the correct
exercise.

Chen et al. [42]

This study aimed to use
blood measurements to
detect overweight
conditions and identify key
factors distinguishing
overweight from healthy
individuals.

ELM, SVM, and BPNN.
Data: Blood and biochemical data
of 225 obese and 251 healthy
individuals.
ELM: 89.98% AUC, 83.95% Sen,
and 96.02% Spec. SVM: ~89.5%
AUC, ~82% Sen, and ~97% Spec.
BPNN: ~83.5% AUC, ~83.5% Sen,
and ~84% Spec.

ELM outperformed
SVM and BPNN.

Dugan et al. [34]

This study sought to
predict obesity in children
after age two using data
gathered from the CHICA
clinical decision support
system.

RT, RF, ID3, J48, naive Bayes,
BayesNet.
Data: CHICA dataset.
RT: 84, 88, 80% (ACC, Sen, Spec).
RF: 86, 86, 85.
ID3: 84, 88, 82.
J48: 79, 82, 76.
NB: 63, 58, 69.
BN: 63, 58, 68.

RT and ID3 were more
sensitive in predicting
obesity.

Dunstan et al. [43]

This study aimed to predict
country-level obesity
prevalence using national
sales data for specific food
and beverage categories,
utilizing three non-linear
regression machine
learning methods.

SVM, RF, and XGB.
Data: 48 categories of food and
beverages across 79 countries and
obese adult populations in these
countries
Root mean square error (RMSE).
SVM: 0.063.
RF: 0.057.
XGB: 0.058.

RF showed the best
execution and was
closely followed by
XGB.
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Table 1. Cont.

Authors Objective
ML or DL Models Tested and
Dataset Used

Outperformed Model

Ergün et al. [44]

This study aimed to
develop an automated
system for detecting and
monitoring obesity by
classifying affected areas
based on diverging arteries
and BMI.

LR, MLP.
Data: Divergent arteries and BMI
of 30 healthy and 52 obese
individuals.
LR: 88.4% Sen and 86.6% Spec.
MLP: 92.3% Sen and 86.6 Spec.

MLP performed better
than LR.

Gerl et al. [45]

The objective of this work
was to use advanced ML
modeling to predict several
indicators of obesity based
on the plasma lipidome in
a large population cohort.

RF, GB, Lasso and Cubist models
Data: Plasma lipidome of
1061 participants of the FINRISK
2012 population cohort.
Lasso regression: Mean absolute
error (MAE) of 3.61 ± 0.33,
explaining 73% of the variation in
BFP.

Lasso and Cubist
models showed better
performance.

Heydari et al. [46]

This study aimed to
classify obesity using
artificial neural networks
and logistic regression,
considering
socio-economic status and
anthropometric measures.

LR and NN.
Data: Socioeconomic status and
anthropometric measures of
414 healthy military personnel in
southern Iran.
LR: 80.2% Sen, 81.9% Spec, 0.888
ROC.
NN: 79.7% Sen, 83.7% Spec, 0.884
ROC.

LR and NN showed
comparative overall
performance.

Jindal et al. [47]

Utilized the R ensemble
prediction model and
Python interface to propose
an ensemble ML approach
for predicting obesity.

RF and partial least squares (PLS).
Data: Dataset containing several
parameters related to obesity.
Both RF and PLS predicted
obesity with an accuracy of
89.68%.

Kaur et al. [38]

Two separate datasets were
used to predict obesity and
necessary meals in
adulthood using various
ML algorithms.

GB, XGB, BME, SVM, KNN.
Data: UCI Machine Learning
Repository of 2111 records with
16 attributes;
% of the accuracy of prediction
XGB (97.79), GB (97.16), SVM
(87.7), and KNN (82.3).

GB and XGB performed
very well in prediction.

Kupusinac et al. [48]

This study employed ANN
to understand the
relationship between fat
and fat-free mass for
diagnosing obesity and
predicting its associated
comorbidities.

ANN compared with previous
formulas.
Data: 2755 subjects with ages
from 18 to 88 y and BMI from
16.60 to 64.60 kg/m2.
ANN predicted with an accuracy
of 80.43 ± 1.48, which increased
average predictive accuracy from
+1.23% to +3.12% with previous
formulas.

ANN performed better
in terms of accuracy.
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Table 1. Cont.

Authors Objective
ML or DL Models Tested and
Dataset Used

Outperformed Model

Lin et al. [49]

Employed a user-friendly
ML system to screen
overweight individuals
and predict obesity
variables.

LR, KNN, ANN/MLP, DT, RF,
GBM, CatBoost.
Data: Age, sex, medical history,
and habits of 5236 Chinese
participants.
Metrics and score for predicting
overweight to obesity: LR
(0.84–0.85), KNN (0.87–0.82),
ANN (0.88–0.83), DT (1–0.79), RF
(1–0.84), GBM (0.87–0.84), and
CatBoost (0.91–0.83).

CatBoost demonstrated
a comparatively higher
accuracy.

Lingren et al. [50]

This study aimed to
develop a model to
precisely identify severe
early-onset childhood
obesity in children aged
1–6 years using EHR data.

SVM and NB, in combination
with WEKA data mining software
(V 3.6).
Data: EHR databases from the
Boston Children’s Hospital (BCH)
and Cincinnati Children’s
Hospital and Medical Center
(CCHMC).
NB: 0.9–0.95 PPV.
SVM: 0.733–0.813 PPV.

In terms of PPV, NB
performed better than
SVM.

Machorro-Cano et al.
[51]

This paper presented
PISIoT, an advanced smart
health platform that
leverages ML and IoT
technologies to prevent,
detect, treat, and manage
being overweight, obesity,
and other related health
disorders.

Weka API and J48 were used to
identify critical variables and
classify patients.
Apache Mahout and RuleML
were used to generate medical
recommendations.
Data: 40 elderly obese
participants aged 60 to 80 years.
Data for each patient were based
on 17 predictor attributes like
calories consumed and burned,
activity minutes, sleep duration,
weight, etc.

J48 identified critical
variables like physical
activity, heart rate,
weight, and calorie
intake in classifying
obesity and associated
risks.

Maharana et al. [35]

Provided a uniform
method for quantifying
built-environment
characteristics and their
relationship with obesity
prevalence, allowing for
cross-study comparisons.

CNN.
Dataset: 150,000 high-resolution
images from Google Static Maps.
CNN identified 125 built
environment features linked to
obesity prevalence. Features like
greenery, road type, housing
density, etc., explained 64.8% of
the variation in obesity
prevalence.

This study utilized
CNN to extract
built-environment
elements from satellite
images for health
indicators analysis.
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Table 1. Cont.

Authors Objective
ML or DL Models Tested and
Dataset Used

Outperformed Model

Milla Kibble [52]

It aimed to generate new
hypotheses about
multi-molecular
interactions in obesity
development; large
multivariate datasets were
analyzed using group
factor analysis (GFA).

GFA.
Data: 43 monozygotic twin pairs,
25 pairs with weight discordant
(δBMI > 3).
GFA identified 38 components
linking variables across datasets
like clinical data (42), cytokine
data (71), genomic data (1587),
methylation data (1605), and
dietary data (63).

Montañez et al. [53]

This paper presented a
genetic profile study using
ML algorithms to predict
the future risk of complex
diseases, like obesity, based
on the subjects’ SNP arrays
and BMI status.

GB, KNN, SVM, RF, and
multilayer perceptron neural
network.
Data: Database of Personal
Genome Project (PGP) and
manually curated database of
SNP.
SVM: 90.5 Sen, 88.24 Spec, 86.96
AUC.
RF: 52.9 Sen, 95.6 Spec, 87.9 AUC.
KNN: 64.7 Sen, 91.3 Spec, 88.6
SUC.

SVM achieved the best
performance.

Nasrollah et al. [54]

This study aimed to apply
ML to evaluate the
utilization of childhood
clinical variables and
genetic risk factors in
predicting adult obesity.

GB.
Data: 2262 participant forms.
Cardiovascular risk in YFS
(Young Finns).
GB: Identified SNP WGRS19
with AUC = 0.74 to 0.78
(higher WGRS19 linked with
higher BMI at 9 and WGRS97 at
6 years).

Pang et al. [55]

This study intended to
predict the onset time of
early childhood obesity
using XGBoost through an
analysis of roughly 11
million pediatric clinical
interactions.

XGBoost.
Data: Pediatric Big Data (PBD)
repos.
XGB recall for 24–36 months was
97.63%; for 72–84 months, it was
48.96%.

Pereira et al. [56]

This study intended to
apply ML algorithms to
predict obesity and related
disorders in the Indian
population and discover
significant indicators for
early disease detection to
enhance public health.

LR, NB, DT, KNN, RF, AdaBoost.
Dataset of lifestyle, lipid profile,
and symptoms tests collected
through a Google form from India.
RF (lifestyle test) AUC values
0.979.
AdaBoost (lipid profile) AUC 1.00.
RF (symptom test) AUC 1.00 for
disease prediction like diabetes,
hypertension, CVD, etc.

RF and AdaBoost
algorithm gave better
accuracy for obesity
prediction.
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Table 1. Cont.

Authors Objective
ML or DL Models Tested and
Dataset Used

Outperformed Model

Pouladzadeh et al. [57]

This research proposed an
assistive calorie
measurement system to aid
patients and clinicians in
their fight against
diet-related health
problems.

CNN.
Data: 30 categories of the food
image dataset (apple, banana,
pasta, etc.).
The recognition rate for calories
(single food portions) was nearly
99–100%.

100% accuracy of food
recognition.

Rajput et al. [58]

This work utilized ML and
DL on publicly available
i2b2 clinical datasets to
identify chronic illness
status, specifically obesity.

PART, NB, RF, and Hoeffding tree.
NLP text mining based on the
deep neuronal model and
multichannel CNN.
Data: i2b2 dataset.
Obesity identification accuracy:
PART (95.2%), NB (70.52%), RF
(81.01%), Hoeffding trees
(84.26%).

PART, NB, RF, and
Hoeffding trees
performed well with
extensive feature
engineering, while
CNN ensembles excel
due to their automatic
feature learning.

Scheinker et al. [59]

Exploring variation in US
county-level obesity
prevalence rates using
epidemiologic and ML
models.

LR, GBM, RF, and NN.
Data: EHR of urban emergency,
US.
RF: 0.85 AUC, 0.76 Sen, and 0.8
Spec.
GBM: 0.83 AUC, 0.74 Sen, and
0.78 Spec.
LR: 0.78 AUC, 0.7 Sen, and 0.75
Spec.
NN: 0.81 AUC, 0.72 Sen, and 0.71
Spec.

RF and GB
best-performing ML
models.

Shao et al. [60]

This paper presented
unique intelligent hybrid
methods for obtaining
fewer explanatory
variables; the proposed
forecasting models can
effectively predict the body
fat percentage (BFP).

MR, ANN, MARS, and SVR.
Dataset: Cleveland Heart Disease
dataset.
DT: 78.6 Acc, 79.3 Pre, and 78.7
recall.
RF: 82 Acc, 83.4 Pre, and 81.9
recall.
SVM: 83.6 Acc, 84.2 Pre, and 83.6
recall.
Hybrid: 85.3, 85.7, and 85.3
percent.

All hybrid models MR,
ANN, MARS, and SVR
performed well in BFP
prediction.

Singh et al. [61]

This study aimed to predict
future BMI using past BMI
data from the Millennium
Cohort Study, evaluating
various regression and
neural network models for
forecasting teenager BMI.

Linear SVM, quadratic SVM,
decision tree, MLPFFANN.
Dataset: Millennium Cohort
Study.
MLPFFANN is the most effective
in prediction, with an accuracy of
93.4%, with the lowest mean
absolute error.

MLPFFANN had the
highest accuracy.
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Table 1. Cont.

Authors Objective
ML or DL Models Tested and
Dataset Used

Outperformed Model

Uçar et al. [62]

This work aimed to reliably
determine BFP utilizing
hybrid ML approaches
with minimal parameters,
based on 13
anthropometric data
points.

MLFFNN, DT, SVM, and
combination.
MLFFNN+DT, MLFFNN+SVM,
DT+SVM, MLFFNN+DT+SVM.
Dataset: Anthropometric and
body fat percentage values of
252 individuals.

MLFFNN and
MLFFNN+DT+SVM
performed well in every
level of feature
selection.

Zhang et al. [63]

This investigation aimed to
assess the significance of
non-linear information on
the prediction of childhood
obesity.

LR, DT, NN, Bayesian, SVM.
Dataset: Wirral database.
Bayesian (35.5% Sen and 91.5%
Spec) and SVM (46% Sen and
72.5% Spec).

SVM showed better
sensitivity, and
Bayesian performed
better overall.

Zheng et al. [64]

To assess four ML models
for predicting obesity in
Tennessee high school
students using nine
behaviors from the 2015
Youth Risk Behavior
Surveillance System
(YRBSS).

BLR, IDT, (KNN), ANN
Dataset: 2015 survey data from
the biennial YRBSS, Tennessee.
IDT (80.23% ACC and 90.74%
Spec).
KNN (88.82% ACC and 93.44%
Spec).
ANN (84.22% ACC and 99.46%
Spec).

IDT, KNN, and ANN
performed much better
than BLR. KNN
showed the highest
accuracy, and ANN, the
highest specificity.

Acronyms: AdaBoost, adaptive boosting; ANN, artificial neural network; BLR, BayesNet: Bayesian network,
binary logistic regression; BME, bagging meta-estimator; BPNN, backpropagation neural network; CatBoost,
category boost; CNN, convolutional neural network; DT, decision tree; ELM, extreme learning machine; GB,
gradient boosting; GFA, group factor analysis; ID3, Iterative Dichotomiser; IDT, improved decision tree; KNN, K-
nearest neighbor; LR, logistic regression; MARS, multivariate adaptive regression spline(s); MLFFNN, multilayer
feedforward neural network; MLM, multinomial logistic model; MLPFFANN, multilayer perceptron feed forward
artificial neural network; MLP, multilayer perception; MR, multiple regression; NB, naive Bayes; NLP, natural
language processing; NN, neural network; PART, partial C4.5 decision tree; RF, random forest; RT, random tree;
RuleML, rule markup language; SVM, support vector machine; SVR, support vector regression; WEKA, Waikato
Environment For Knowledge Analysis; XGB, extreme gradient boosting.

8. Artificial Intelligence in the Management of Obesity

Treatment and management of obesity entail all-encompassing approaches to enhance

general health, minimize extra body weight, and avert obesity-related issues. There are

several essential points, such as lifestyle modifications (balanced diet, physical activity,

sleep, and wake), behavioral therapy (managing stress, emotional triggers for overeating,

sedentary life, etc.), pharmacotherapy (suppressing appetite, reducing nutrient absorption,

altering metabolism, etc.), and bariatric surgery (Figure—graphical abstract). Healthcare

practitioners can assist people in reaching and maintaining a healthy weight while lowering

their risk of obesity-related problems by combining lifestyle changes, behavioral therapy,

medication, and, if necessary, surgical procedures [65,66].

Artificial intelligence has the potential to transform obesity treatment and management

by implementing innovative strategies to address this intricate health challenge, as outlined

in Table 2. AI algorithms are being used to create personalized interventions, prediction

models, and decision support systems for healthcare personnel [49,67]. These technologies

use large databases to uncover trends, predict obesity risk factors, and offer personalized

treatment regimens based on individual features and health history. Additionally, AI-

powered solutions enable remote monitoring of patients, allowing for rapid interventions

and alterations to treatment regimens. By leveraging AI, healthcare professionals can
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increase the efficiency and effectiveness of obesity management, resulting in better patient

outcomes and lower healthcare expenditures [16].

Table 2. AI-/ML-driven services in obesity management.

Service/Tool Description Purpose AI/ML Model

CHICA pediatric obesity
prediction [34]

Predicts childhood obesity
based on early life data
(e.g., weight trends)

Early obesity prediction Random tree, ID3

ABCD adolescent obesity
prediction [37]

Predicts obesity risk in
adolescents by analyzing
socioeconomic and
environmental factors

Socio-environmental risk
prediction

Random forest, explainable
AI

Meal planning and obesity
risk reduction [38]

Uses ML to suggest
personalized meal plans
based on caloric needs,
lifestyle habits

Personalized meal
recommendations

Gradient boosting,
XGBoost

Genetic SNP analysis for
obesity [39]

Uses ML to suggest
personalized meal plans
based on caloric needs,
lifestyle habits

Genetic risk evaluation SVM, decision trees

Smart wearable for
continuous monitoring [68]

Tracks physical activity,
sleep, and caloric intake;
provides real-time
feedback for lifestyle
adjustments

Continuous lifestyle
monitoring

CNN, recurrent neural
networks

Preoperative obesity risk
assessment [69]

Assesses risks like
respiratory issues in obese
patients undergoing
surgery

Perioperative risk
prediction

Extreme gradient boosting,
ANN

Moreover, AI technologies can support the ongoing management of obesity by facili-

tating continuous monitoring and feedback. Wearable devices that track physical activity,

sleep patterns, and caloric intake can feed data into AI systems for real-time analysis. Rec-

ommendations can then be adjusted dynamically, providing individuals with immediate

guidance to help them make healthier choices and maintain progress toward their weight

management goals. Intelligent systems can also offer behavioral interventions, addressing

one of the critical challenges in obesity management [68]. For instance, interventions might

include AI-powered applications that incentivize healthier food choices or more active

lifestyles. The AI app generates dietary recommendations that suit the user’s dietary pref-

erences and type. These suggestions are customized based on the user’s input, providing

diverse meal options matching their diet. The user’s information is processed to refine the

model for better recommendations. Additionally, AI can help individuals identify psycho-

logical patterns that contribute to obesity and suggest behavioral modification techniques to

help individuals cope with cravings and triggers for unhealthy eating behaviors. Likewise,

the app collects user information on physical fitness by evaluating their fitness goals, BMI,

age, and overall health condition [70]. Through interaction, the app gains insights into

users’ exercise preferences, past fitness endeavors, and any specific health issues to deliver

customized recommendations. This personalized strategy seeks to provide suggestions

that closely match each user’s requirements and preferences, thereby improving the app’s

overall effectiveness and user satisfaction.
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However, while AI holds significant promise in reshaping obesity treatment and

management, it is crucial to ensure that these technologies are developed and implemented

with careful consideration of ethical concerns such as data privacy, the potential for biased

algorithms, and the accuracy of AI-based recommendations [71]. Maintaining a transparent,

responsible approach to integrating AI in healthcare is essential for realizing its full potential

while safeguarding patient well-being and trust.

9. Anti-Obesity Pharmacotherapy and Artificial Intelligence

Obesity involves complex metabolic and neurohormonal processes. Hunger and sati-

ety regulation encompass mechanisms within the central nervous system (CNS), peripheral

nervous system, and hormonal pathways. Hormones and signals from vagal afferent

neurons modulate hunger and satiety by responding to mechanical changes, the presence

of macronutrients, and alterations in pH and tonicity. For instance, ghrelin originates from

stomach fundic cells and stimulates hunger by activating AgRP/NYP neurons. At the

same time, glucagon-like peptide-1 (GLP-1), released by the gut after food intake, induces

satiety by activating POMC/CART neurons and inhibiting AgRP/NYP neurons. Insulin

and leptin similarly contribute to appetite suppression. There are five FDA-approved

anti-obesity medications: orlistat (which acts on the gastrointestinal tract and inhibits the

absorption of fatty acids) [72], phentermine (which functions as an adrenergic agent, de-

creasing hunger) [73], phentermine–topiramate (which reduces the desire to eat by boosting

dopamine), naltrexone–bupropion (which acts as naltrexone; which suppresses appetite,

and bupropion is a dopamine and norepinephrine reuptake inhibitor) [74], liraglutide

(which is an agonist of GLP-1), and semaglutide (which activates the GLP-1 receptor) [75].

Obesity treatment involves a variety of techniques, including lifestyle changes, surgery,

and medications. Lifestyle modifications sometimes require significant commitment, and

surgery is expensive and complex; therefore, medicine is the preferred option for many

people due to its accessibility and less invasive nature. AI is rapidly evolving and could

revolutionize how we diagnose and treat obesity. In the realm of drug reactions, the typical

ML approach involves several steps, such as cohort selection, data processing, predictor

identification, creating and validating machine learning models, assigning subgroups,

and analyzing drug responses. Despite its potential, current research needs to provide

more proof to integrate ML algorithms into everyday clinical practice due to complexity,

validation issues, and unclear efficacy. However, as evidence accumulates, we anticipate

ML will increasingly influence precision pharmacotherapy for treating obesity.

10. Artificial Intelligence and Bariatric Surgery

Bariatric surgery encompasses a range of surgical interventions aimed at aiding indi-

viduals with severe obesity in weight loss. These procedures function by limiting stomach

capacity, modifying digestion, or combining both approaches. Typical bariatric surgeries

include gastric bypass, sleeve gastrectomy, adjustable gastric banding, and biliopancreatic

diversion with duodenal switching [76]. Conversely, non-bariatric surgery encompasses

any surgical intervention unrelated to weight reduction. These procedures vary from cor-

rective surgeries addressing specific medical issues like cardiac or orthopedic conditions to

elective treatments such as cosmetic enhancements. Fundamentally, non-bariatric surgeries

do not target obesity treatment as their primary objective.

Artificial intelligence algorithms have been integrated into every stage of the perioper-

ative process for patients undergoing bariatric surgery (BS), from presurgical assessment

and risk evaluation to predicting postoperative complications and outcomes [77]. Thor-

ough preoperative evaluation is vital for bariatric surgery candidates to gauge their risks

and outlook. The objective is to pinpoint obesity-related health issues, identify high-risk
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patients, and reduce postoperative complication risks. Numerous studies indicate that AI

has proven to be a valuable tool in this process. For example, Zohou and collaborators

investigated six ML models to anticipate challenging intubation in obese patients and iden-

tified three effective approaches. Among these algorithms, the extreme gradient boosting

algorithm achieves an accuracy exceeding 80% and a precision reaching 100% [69].

Obstructive sleep apnea (OSA) is a serious sleep disorder in which breathing repeat-

edly stops and starts during sleep due to throat muscle relaxation. Polysomnography (PSG)

is widely recognized as a reliable and efficient diagnostic method, offering insights into

the severity of OSA and the extent of sleep disturbances [78]. Treatment options include

lifestyle changes such as weight loss, exercise, and continuous positive airway pressure

(CPAP) machines to maintain open airways during sleep [79]. Oral appliances such as

mandibular advancement devices are also used [78,79]. Surgery is considered in selected

patients but is not typically the first choice due to potential risks and limited evidence of

effectiveness. Furthermore, patients with obesity commonly experience lung dysfunction,

including conditions such as chronic obstructive pulmonary disease (COPD), chronic lung

disease, and asthma, which can be detected through spirometry. Assessing these conditions

during preoperative evaluation is crucial. Viswanath and associates evaluated smartphone

spirometry efforts and found that neural networks can extract more information from

signals than traditional methods, enabling expert-level validity feedback for smartphone-

based spirometry [80]. However, we could not find randomized trials comparing AI to

traditional perioperative evaluation methods.

Artificial intelligence has a variety of possible applications during the intraoperative

phase, including medication management, hemodynamic optimization, neuromuscular

block monitoring, and anesthesia depth monitoring. However, its application in bariatric

surgery is largely unknown. To the best of our knowledge, there is little literature on the use

of ML in this stage, such as Ingrande et al.’s study predicting the early distribution kinetics

of propofol [81], Twinanda and colleagues’ estimation of surgery duration and quality

improvement [82], and automatic identification of steps in laparoscopic sleeve gastrectomy

from operative video with a high degree of accuracy [83].

Complications after bariatric surgery may emerge in various forms and at different

times, ranging from surgical complications such as bleeding and bowel obstruction to issues

within the pulmonary system, such as pneumonia and thrombosis, as well as nutritional,

hepatobiliary, gastrointestinal, and neurological problems. Some research has explored

the use of ML in predicting potential postoperative complications following bariatric

surgery. Taheri and associates designed artificial neural networks that predict postoperative

complications at ten days, one month, and three months by considering patient age, BMI,

smoking status, intraoperative complications, associated health conditions, laboratory

results, and ultrasound and endoscopic examination findings. Their results demonstrated

the predictive system’s substantial accuracy, specificity, and sensitivity in identifying

complications [84]. Additionally, Nudel and coworkers employed two ML models, ANN

and XGB, to predict complications such as leakage and deep vein thrombosis following

bariatric surgery. Their analysis indicated that XGB and the ANN outperformed the LR in

predicting leakage and venous thromboembolism [85].

Additional studies have explored ML and DL applications to predict complications

related to bariatric surgery’s perioperative, intraoperative, and postoperative periods. We

have compiled a summary table to provide an overview of this literature (Table 3).
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Table 3. Utilization of different machine and deep learning models in bariatric surgery.

Authors Objective Machine Learning Models Remark

Assaf et al. [86]
To predict preoperative
hiatal hernia diagnosis.

DT.
Dataset: Anthropometric and
obesity-related comorbidities data
collected (2012–2015) before
bariatric surgery for HH.
Sensitivity of method SS 38.5%
and DT 60.2%

The decision tree model
performed better in
accuracy and sensitivity
than the swallow study
(barium swallow X-ray
study).

Cheng et al. [87]

This study used phone
sensors to predict
pulmonary function,
employing a universal
support vector machine
model that processes signal
and patient demographic
features to determine
function categories.

SVM.
Dataset: 35 patients NorthShore
University, 6-min walk test
(6WMT) data recorded for
pulmonary function on
smartphones.
Global Initiative for Chronic
Obstructive Lung Disease
(GOLD) GOLD 1-IV classified
with an accuracy of 98.51–100%.

SVM had an accuracy
of 99%.

Gao et al. [88]

This research described a
method for diagnosing
obstructive sleep apnea
syndrome utilizing
ballistocardiogram data
and ML.

SVM and fusion of LR-SVM
Data: Ballistocardiogram (BCG)
signals were captured via
piezoelectric ceramic sensors
placed under a mattress.
LR-SVM was diagnosed with
sensitivity, specificity, and
accuracy values of 74%, 75%, and
75%, respectively.

LR-SVM performs
relatively better than
SVM alone.

Liew et al. [89]

This study analyzed the
prevalence and risk factors
of gallbladder disease in
obese individuals using
logistic regression and
ANN.

LR and ANN.
Data: 117 obese patients
underwent bariatric surgery and
cholecystectomy from 1999 to
2005 in Taiwan.
ANN classified with an accuracy
of 97.14% and type II error of 25%
(gallstone cases as non-gallstone)
and LR with 88.2% accuracy and
100% error.

ANN demonstrated a
better classification rate
compared to LR.

Mencar et al. [78]
To predict the severity of
obstructive sleep apnea
syndrome using ML.

MV, NB, KNN, CT, RF, SVM,
AdaBoost-SVM, ML, LR, SVR,
AdaBoost-SVR
Data: 313 patients of OSAS.
SVM: 65% AUC, 44.7% CA, 44.7
recall.
RF: 63.7% AUC, 44.1% CA, 44.1%
recall.

In classification and
regression, SVM gave
better accuracy and
AUC, but RF performed
better in precision or
recall.
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Table 3. Cont.

Authors Objective Machine Learning Models Remark

Razzaghi et al. [90]

This study examined the
effectiveness of unbalanced
classification algorithms in
predicting outcomes for
type 2 DM obese patients
who have undergone
bariatric surgery.

NB, RBFNN, KNN, DT, J48, SVM,
and LR
Data: Premier Healthcare
Database.
Predicting diabetes (using
bagging with chi-squared):
G-mean of 0.84 and ROC curve of
0.91.
Predicting angina and heart
failure (using RF with
Chi-squared): G-mean of 1.0 and
ROC 1.0.

Twinanda AP [82]

This research introduced
RSDNet, a deep-learning
pipeline that automatically
calculates the remaining
operation duration (RSD)
during surgery using
visual input from
laparoscopic films.

Naive and DL-RSDNet.
Data: Cholec (120 laparoscopic
cholecystectomy videos) and
bypass (170 laparoscopic gastric
bypass videos).
Cholec120 dataset: Naïve (MEA
18.1 min and RSDNet (MEA
11 min).
Bypass170 dataset: Naïve (MAE
~30.5 min) and RSDNet (MAE
~15.7 min).

In medium surgery,
Naive and RSDnet
perform comparably,
but in short and long
surgery, RSDnet
performed much better.

Viswanath et al. [80]
To assess the accuracy of
smartphone-based
spirometry using ML.

NB, KNN, LR, RF, GB, CNN,
RNN.
Data: 36,161 audio recordings
related to smartphone spirometry.
GB: 97.8% precision and 91.6%
recall.
RNN: 98.3% precision and 88%
recall.

GB and RNN
performed with better
precision and recall
compared to others.

Zhou et al. [69]

This study evaluated six
ML algorithms to predict
difficult intubation in obese
patients.

LR, TR, RF, GBm, GBdt, and
XGBc.
Data: 1015 obese patients from
the public database.
Xgb: Acc. > 80%, Prec. 100%,
AUC 0.736.
Gbdt: Prec. 71–100% and AUC
0.72–0.78.

Xgbc algorithm
outperformed the
others in accuracy (80%)
and precision (100%).

11. Recent Advances in AI in Obesity

Artificial intelligence applications in diagnosing and managing obesity are rapidly

evolving. Several technological advancements have been integrated into the obesity man-

agement armamentarium, including deep learning, digital twins, and the application of

explainable artificial intelligence methods. Deep learning methods have several applica-

tions in obesity detection and management. Deep learning, particularly convolutional

neural networks, can be used for medical image analysis to assess fat distribution and

obesity-related disease [91,92]. Furthermore, deep learning can be used to predict and

untangle complex relationships and interactions between genetic data, demographics, and

lifestyle changes; consequently, it can enhance early detection and interventions [45,46].

Deep learning can be integrated into wearable technology to track activities, sleep pat-
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terns, and heart rate. Therefore, personalized recommendations on obesity management

can be provided [93,94]. Other applications of deep learning include behavioral analysis,

nutritional assessment, and enhancing telemedicine and personalized interventions [95,96].

Digital twin technology has a promising application in obesity management by cre-

ating digital replicas of individuals’ physiological and behavioral profiles, allowing for

personalized monitoring and management strategies for obesity. Furthermore, digital twins

can simulate the effects of various interventions on an individual’s weight and health

metrics, enabling tailored recommendations [97].

Machine learning methods are generally a black box and the explanation of how

the model predicted the outcome is not always clear. Therefore, explainable AI methods

have emerged to provide explanations for machine learning models and which features

contributed mainly to the prediction. Several explainable AI methods can be applied to

explain the model output, such as LIME (Local Interpretable Model-agnostic Explanations),

feature importance, SHAP (SHapley Additive exPlanations), and Quantum Lattice. These

methods provide details on which variables contributed mostly to model output, the

direction of effect, and the interaction between different features [98,99].

12. Current Limitations, Future Directions, and Recommendations

The future of AI in obesity research and management is promising, and poised to

revolutionize personalized therapies, diagnostics, and treatment approaches. Wearables

enable AI to build individualized nutrition programs, forecast obesity onset, and provide

continuous monitoring. It will improve behavioral therapy, medication research, and public

health campaigns by analyzing large databases to identify more successful techniques. AI’s

incorporation into surgical procedures and smart gadgets will improve outcomes, while

its use in environmental treatments and VR/AR apps will encourage healthy lifestyles.

These developments will result in more precise, effective, and scalable solutions for obesity,

ultimately enhancing public health and individual well-being [29].

While AI and machine learning (ML) have the potential to transform obesity man-

agement, several challenges limit their broad implementation. A major concern is data

quality, as AI models require large, high-quality datasets that incorporate diverse demo-

graphic, genetic, and behavioral information. Many current models suffer from incomplete

or inconsistent data, which decrease their accuracy and limit their applicability across

different populations [14,100]. Additionally, the technical infrastructure needed to support

ML, including powerful computing systems and extensive data storage, poses a significant

barrier, particularly in resource-constrained healthcare settings.

Organizational capacity and expertise present another limitation. Successfully inte-

grating AI into clinical workflows requires that healthcare organizations have staff skilled

in AI and ML, which remains a hurdle for many institutions. Ethical considerations also

demand attention; AI systems in healthcare must be designed with transparency, fairness,

and robust privacy protections [14,101]. Given the sensitive nature of health data, strict

measures are needed to prevent misuse or unauthorized access, adding further regulatory

and ethical challenges.

Addressing these limitations will require the development of robust data collection

protocols to improve the consistency and completeness of datasets. Standardizing data

collection processes will enhance the reliability of AI models in managing obesity. Building

partnerships across institutions to create shared data repositories can increase sample

diversity and size, improving model training and applicability. Investments in technical

infrastructure and collaborations with technology firms can help support healthcare organi-

zations in adopting AI/ML solutions, extending the benefits of these advancements to more

facilities. To address organizational challenges, training programs for healthcare providers
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can build proficiency in AI/ML applications. Educational initiatives should emphasize

understanding AI-generated insights and effectively integrating them into patient care.

Additionally, expanded ethical guidelines and regulatory frameworks specific to AI in

healthcare are essential. Such guidelines should focus on patient consent, transparency,

and model interpretability to foster accountability and build trust.

To enhance obesity prevention and management, healthcare systems should integrate

a variety of datasets, including electronic medical records and mobile health applications,

to improve predictive models and facilitate early interventions. It is vital to implement

targeted strategies, such as researching at-risk populations, utilizing machine learning for

personalized meal planning, and incorporating genetic data into risk assessments. Devel-

oping AI-driven tools for ongoing monitoring and prioritizing ethical AI practices will help

sustain patient trust. Collaboration among healthcare professionals, data scientists, and

policymakers is crucial for creating comprehensive management strategies that encompass

lifestyle changes and advancements in bariatric surgery. Furthermore, training healthcare

providers in using AI tools and supporting research on the effectiveness of these models

will enhance obesity management efforts and improve patient outcomes. Key observations

and recommendations from the recent literature review are summarized in Table 4.

Table 4. Recommendations based on key findings.

Limitation Recommendation

AI algorithms rely on huge, high-quality
datasets to generate accurate predictions.
Inconsistent or incomplete data can result
in incorrect outcomes.

Collecting complete and high-quality data,
including diverse demographic
information, can improve the accuracy
and fairness of AI forecasts [102].

AI models, particularly complicated ones
like neural networks, can overfit training
data, rendering them less successful on
fresh, unseen data.

Continuously assessing and updating AI
models with new data might assist reduce
overfitting and increase generalizability
[103].

Many AI models, particularly deep
learning models, are frequently regarded
as “black boxes”, making it difficult to
comprehend how they arrive at precise
predictions.

Developing approaches for making AI
models more interpretable can help
healthcare providers comprehend and
trust AI-driven suggestions [104].

The utilization of personal health data
creates serious ethical and privacy
concerns. Ensuring data security and
patient consent is critical.

Integrate AI into healthcare by training
people, developing interdisciplinary
teams, and establishing ethical
frameworks for transparency and data
privacy [101].

13. Conclusions

This review highlights the transformative role of artificial intelligence in obesity re-

search and management, encompassing predictive modeling, personalized intervention

strategies, pharmacotherapy, and surgical support. With the integration of machine learn-

ing and deep learning algorithms, AI has demonstrated significant potential in predicting

obesity risk, managing treatment pathways, and providing real-time, tailored recommenda-

tions. These innovations are particularly promising in advancing personalized healthcare

and addressing the multifaceted challenges of obesity, from genetic predispositions to

environmental and behavioral influences.

However, while AI offers powerful tools to combat obesity, realizing its full potential

will require overcoming key challenges, such as ensuring data quality, safeguarding patient

privacy, and maintaining ethical standards. Further research and refinement are essential
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to develop robust, scalable AI solutions that not only enhance patient outcomes but also

support healthcare practitioners in delivering equitable and efficient care. Ultimately, AI-

driven insights and interventions provide a promising path forward in addressing the

global obesity epidemic, offering hope for improved health outcomes and a substantial

reduction in obesity-related health burdens.

Author Contributions: S.A.: conceptualized and drafted the manuscript; F.K.: conducted the initial

critical review of the manuscript. M.D.L., A.A.A., W.A. and H.F.A.: critically reviewed and amended

the manuscript; M.M.: assisted in drafting; R.A. and I.A.: assisted with searching and screening the

research articles. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Scientific Research Center, Ministry of Defense Healthcare

Services, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Camacho, S.; Ruppel, A. Is the calorie concept a real solution to the obesity epidemic? Glob. Health Action 2017, 10, 1289650.

[CrossRef] [PubMed]

2. Ibrahim, S.; Akram, Z.; Noreen, A.; Baig, M.T.; Sheikh, S.; Huma, A.; Jabeen, A.; Lodhi, M.; Khan, S.A.; Hudda, A.; et al.

Overweight and Obesity Prevalence and Predictors in People Living in Karachi. J. Pharm. Res. Int. 2021, 33, 194–202. [CrossRef]

3. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease

Study 2019. Lancet 2020, 396, 1223–1249. [CrossRef] [PubMed]

4. Cauchi, D.; Glonti, K.; Petticrew, M.; Knai, C. Environmental components of childhood obesity prevention interventions: An

overview of systematic reviews. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2016, 17, 1116–1130. [CrossRef]

5. Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the

causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med.

2021, 136, 104754. [CrossRef]

6. Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32,

1431–1437. [CrossRef]

7. Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and Obesity: Prevalence, Consequences, and

Causes of a Growing Public Health Problem. Curr. Obes. Rep. 2015, 4, 363–370. [CrossRef]

8. Shaharir, S.S.; Gafor, A.H.; Said, M.S.; Kong, N.C. Steroid-induced diabetes mellitus in systemic lupus erythematosus patients:

Analysis from a Malaysian multi-ethnic lupus cohort. Int. J. Rheum. Dis. 2015, 18, 541–547. [CrossRef]

9. Hu, L.; Huang, X.; You, C.; Li, J.; Hong, K.; Li, P.; Wu, Y.; Wu, Q.; Wang, Z.; Gao, R.; et al. Prevalence of overweight, obesity,

abdominal obesity and obesity-related risk factors in southern China. PloS ONE 2017, 12, e0183934. [CrossRef]

10. Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Almubark, R.A.; BinDhim, N.F.; Alkhamaali, Z.; Alqahtani,

S.A. Obesity in Saudi Arabia in 2020: Prevalence, distribution, and its current association with various health conditions. Proc.

Healthc. 2021, 9, 311. [CrossRef]

11. Puhl, R.M.; Heuer, C.A. Obesity stigma: Important considerations for public health. Am. J. Public Health 2010, 100, 1019–1028.

[CrossRef] [PubMed]

12. Listyoko, A.S.; Okazaki, R.; Harada, T.; Inui, G.; Yamasaki, A. Impact of obesity on airway remodeling in asthma: Pathophysiolog-

ical insights and clinical implications. Front. Allergy 2024, 5, 1365801. [CrossRef] [PubMed]

13. Khera, R.; Butte, A.J.; Berkwits, M.; Hswen, Y.; Flanagin, A.; Park, H.; Curfman, G.; Bibbins-Domingo, K. AI in Medicine—JAMA’s

Focus on Clinical Outcomes, Patient-Centered Care, Quality, and Equity. JAMA 2023, 330, 818–820. [CrossRef] [PubMed]

14. Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future

Healthc. J. 2021, 8, e188–e194. [CrossRef]

15. Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Li, R.; Tang, H.; Wang, K.; Li, Y.; et al. A pathology foundation model

for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [CrossRef]

16. Bays, H.E.; Fitch, A.; Cuda, S.; Gonsahn-Bollie, S.; Rickey, E.; Hablutzel, J.; Coy, R.; Censani, M. Artificial intelligence and obesity

management: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2023. Obes. Pillars 2023, 6, 100065.

[CrossRef]

https://doi.org/10.1080/16549716.2017.1289650
https://www.ncbi.nlm.nih.gov/pubmed/28485680
https://doi.org/10.9734/jpri/2021/v33i31B31708
https://doi.org/10.1016/S0140-6736(20)30752-2
https://www.ncbi.nlm.nih.gov/pubmed/33069327
https://doi.org/10.1111/obr.12441
https://doi.org/10.1016/j.compbiomed.2021.104754
https://doi.org/10.1038/ijo.2008.102
https://doi.org/10.1007/s13679-015-0169-4
https://doi.org/10.1111/1756-185X.12474
https://doi.org/10.1371/journal.pone.0183934
https://doi.org/10.3390/healthcare9030311
https://doi.org/10.2105/AJPH.2009.159491
https://www.ncbi.nlm.nih.gov/pubmed/20075322
https://doi.org/10.3389/falgy.2024.1365801
https://www.ncbi.nlm.nih.gov/pubmed/38562155
https://doi.org/10.1001/jama.2023.15481
https://www.ncbi.nlm.nih.gov/pubmed/37566406
https://doi.org/10.7861/fhj.2021-0095
https://doi.org/10.1038/s41586-024-07894-z
https://doi.org/10.1016/j.obpill.2023.100065


Diagnostics 2025, 15, 396 22 of 25

17. Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity

and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 1–20. [CrossRef]

18. Romero-Corral, A.; Montori, V.M.; Somers, V.K.; Korinek, J.; Thomas, R.J.; Allison, T.G.; Mookadam, F.; Lopez-Jimenez, F.

Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: A systematic review of

cohort studies. Lancet 2006, 368, 666–678. [CrossRef]

19. Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.;

Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity.

Pediatrics 2023, 151. [CrossRef]

20. Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski,

R. American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice

guidelines for medical care of patients with obesity. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2016, 22

(Suppl. S3), 1–203. [CrossRef]

21. Després, J.-P.; Lemieux, I.; Prud’Homme, D. Treatment of obesity: Need to focus on high risk abdominally obese patients. BMJ

2001, 322, 716–720. [CrossRef] [PubMed]

22. Snijder, M.B.; Zimmet, P.Z.; Visser, M.; Dekker, J.M.; Seidell, J.C.; Shaw, J.E. Independent and opposite associations of waist and

hip circumferences with diabetes, hypertension and dyslipidemia: The AusDiab Study. Int. J. Obes. Relat. Metab. Disord. 2004, 28,

402–409. [CrossRef] [PubMed]

23. Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am.

Coll. Cardiol. 2009, 53, 1925–1932. [CrossRef] [PubMed]

24. Kusano, K.F.; Taniyama, M.; Nakamura, K.; Miura, D.; Banba, K.; Nagase, S.; Morita, H.; Nishii, N.; Watanabe, A.; Tada, T. Atrial

fibrillation in patients with Brugada syndrome: Relationships of gene mutation, electrophysiology, and clinical backgrounds. J.

Am. Coll. Cardiol. 2008, 51, 1169–1175. [CrossRef] [PubMed]

25. Kalantar-Zadeh, K.; Streja, E.; Molnar, M.Z.; Lukowsky, L.R.; Krishnan, M.; Kovesdy, C.P.; Greenland, S. Mortality prediction by

surrogates of body composition: An examination of the obesity paradox in hemodialysis patients using composite ranking score

analysis. Am. J. Epidemiol. 2012, 175, 793–803. [CrossRef]

26. Lennon, H.; Sperrin, M.; Badrick, E.; Renehan, A.G. The obesity paradox in cancer: A review. Curr. Oncol. Rep. 2016, 18, 1–8.

[CrossRef]

27. Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. New Engl. J. Med. 2023, 388,

1201–1208. [CrossRef]

28. Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif.

Manag. Rev. 2019, 61, 5–14. [CrossRef]

29. An, R.; Shen, J.; Xiao, Y. Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies. J. Med.

Internet Res. 2022, 24, e40589. [CrossRef]

30. Cerulli, G. Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata; Springer Nature: Heidelberg,

Germany, 2023.

31. Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273.

[CrossRef]

32. DeGregory, K.W.; Kuiper, P.; DeSilvio, T.; Pleuss, J.D.; Miller, R.; Roginski, J.W.; Fisher, C.B.; Harness, D.; Viswanath, S.;

Heymsfield, S.B.; et al. A review of machine learning in obesity. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018, 19, 668–685.

[CrossRef] [PubMed]

33. Dwyer-Lindgren, L.; Freedman, G.; Engell, R.E.; Fleming, T.D.; Lim, S.S.; Murray, C.J.L.; Mokdad, A.H. Prevalence of physical

activity and obesity in US counties, 2001–2011: A road map for action. Popul. Health Metr. 2013, 11, 7. [CrossRef] [PubMed]

34. Dugan, T.M.; Mukhopadhyay, S.; Carroll, A.; Downs, S. Machine learning techniques for prediction of early childhood obesity.

Appl. Clin. Inform. 2015, 6, 506–520. [PubMed]

35. Maharana, A.; Nsoesie, E.O. Use of deep learning to examine the association of the built environment with prevalence of

neighborhood adult obesity. JAMA Netw. Open 2018, 1, e181535. [CrossRef]

36. Anand, V.; Biondich, P.G.; Liu, G.C.; Rosenman, M.B.; Downs, S.M. Child health improvement through computer automation:

The CHICA system. Proc. Medinfo 2004, 107, 187–191. [PubMed]

37. Allen, B.; Lane, M.; Steeves, E.A.; Raynor, H. Using Explainable Artificial Intelligence to Discover Interactions in an Ecological

Model for Obesity. Int. J. Environ. Res. Public Health 2022, 19, 9447. [CrossRef]

38. Kaur, R.; Kumar, R.; Gupta, M. Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial

intelligence. Endocrine 2022, 78, 458–469. [CrossRef]

39. Wang, H.Y.; Chang, S.C.; Lin, W.Y.; Chen, C.H.; Chiang, S.H.; Huang, K.Y.; Chu, B.Y.; Lu, J.J.; Lee, T.Y. Machine Learning-Based

Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing. J.

Comput. Biol. A J. Comput. Mol. Cell Biol. 2018, 25, 1347–1360. [CrossRef]

https://doi.org/10.1186/1471-2458-9-88
https://doi.org/10.1016/S0140-6736(06)69251-9
https://doi.org/10.1542/peds.2022-060640
https://doi.org/10.4158/ep161365.gl
https://doi.org/10.1136/bmj.322.7288.716
https://www.ncbi.nlm.nih.gov/pubmed/11264213
https://doi.org/10.1038/sj.ijo.0802567
https://www.ncbi.nlm.nih.gov/pubmed/14724659
https://doi.org/10.1016/j.jacc.2008.12.068
https://www.ncbi.nlm.nih.gov/pubmed/19460605
https://doi.org/10.1016/j.jacc.2007.10.060
https://www.ncbi.nlm.nih.gov/pubmed/18355654
https://doi.org/10.1093/aje/kwr384
https://doi.org/10.1007/s11912-016-0539-4
https://doi.org/10.1056/NEJMra2302038
https://doi.org/10.1177/0008125619864925
https://doi.org/10.2196/40589
https://doi.org/10.1016/S1470-2045(19)30149-4
https://doi.org/10.1111/obr.12667
https://www.ncbi.nlm.nih.gov/pubmed/29426065
https://doi.org/10.1186/1478-7954-11-7
https://www.ncbi.nlm.nih.gov/pubmed/23842197
https://www.ncbi.nlm.nih.gov/pubmed/26448795
https://doi.org/10.1001/jamanetworkopen.2018.1535
https://www.ncbi.nlm.nih.gov/pubmed/15360800
https://doi.org/10.3390/ijerph19159447
https://doi.org/10.1007/s12020-022-03215-4
https://doi.org/10.1089/cmb.2018.0002


Diagnostics 2025, 15, 396 23 of 25

40. Almeida, S.M.; Furtado, J.M.; Mascarenhas, P.; Ferraz, M.E.; Silva, L.R.; Ferreira, J.C.; Monteiro, M.; Vilanova, M.; Ferraz, F.P.

Anthropometric predictors of body fat in a large population of 9-year-old school-aged children. Obes. Sci. Pract. 2016, 2, 272–281.

[CrossRef]

41. de Moura Carvalho, L.; Furtado, V.; de Vasconcelos Filho, J.E.; Lamboglia, C.M.G.F. Using Machine Learning for Evaluating

the Quality of Exercises in a Mobile Exergame for Tackling Children Obesity. In Proceedings of the SAI Intelligent Systems

Conference (IntelliSys) 2016, London, UK, 21–22 September 2016; pp. 373–390. Available online: https://link.springer.com/

chapter/10.1007/978-3-319-56991-8_28#citeas (accessed on 10 December 2024).

42. Chen, H.; Yang, B.; Liu, D.; Liu, W.; Liu, Y.; Zhang, X.; Hu, L. Using blood indexes to predict overweight statuses: An extreme

learning machine-based approach. PloS ONE 2015, 10, e0143003. [CrossRef]

43. Dunstan, J.; Aguirre, M.; Bastías, M.; Nau, C.; Glass, T.A.; Tobar, F. Predicting nationwide obesity from food sales using machine

learning. Health Inform. J. 2020, 26, 652–663. [CrossRef] [PubMed]

44. Ergün, U. The classification of obesity disease in logistic regression and neural network methods. J. Med. Syst. 2009, 33, 67–72.

[CrossRef] [PubMed]

45. Gerl, M.J.; Klose, C.; Surma, M.A.; Fernandez, C.; Melander, O.; Männistö, S.; Borodulin, K.; Havulinna, A.S.; Salomaa, V.; Ikonen,

E. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol. 2019, 17, e3000443.

[CrossRef] [PubMed]

46. Heydari, S.T.; Ayatollahi, S.M.T.; Zare, N. Comparison of artificial neural networks with logistic regression for detection of obesity.

J. Med. Syst. 2012, 36, 2449–2454. [CrossRef]

47. Jindal, K.; Baliyan, N.; Rana, P.S. Obesity prediction using ensemble machine learning approaches. In Recent Findings in Intelligent

Computing Techniques, Proceedings of the 5th ICACNI 2017, Volume 2; Springer: Singapore, 2018; pp. 355–362. Available online:

https://link.springer.com/chapter/10.1007/978-981-10-8636-6_37 (accessed on 10 December 2024).
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