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Abstract—Artificial Intelligence (AI) has become an integral
part of our lives, finding applications across various industries.
Search algorithms play a crucial role in AI. This paper focuses
on the comparison of different search algorithms within the
context of path-planning in the UC Berkeley’s PAC-Man’s game.
The algorithms under consideration include Depth-First Search
(DFS), Breadth-First Search (BFS), Uniform Cost Search (UCS),
Iterative Deepening Depth First Search (IDDFS), and A∗ Search.
The objective is to identify the most effective algorithm in terms
of path-finding performance. The study’s findings reveal that the
A∗ search algorithm outperforms the others in terms of score,
cost, and node expansion, making it the most suitable choice for
finding the shortest path in the PAC-Man’s game.

Index Terms—Artificial Intelligence, Search Algorithms, Path
Finding, PAC-MAN Game

I. INTRODUCTION

Artificial Intelligence (AI) has revolutionized the gaming
industry by enhancing game mechanics and creating more
immersive and intelligent experiences for players. One area
where AI has made significant strides is in the development
and application of search algorithms in games [1], [2]. These
algorithms play a crucial role in enabling game characters to
navigate game worlds, find optimal paths, and make intelligent
decisions in real-time.

Search algorithms in games involve the exploration of game
states and the identification of the most favorable actions
or paths to achieve specific objectives. By employing AI
techniques, game developers can create intelligent agents ca-
pable of efficiently searching through complex environments,
avoiding obstacles, and making informed decisions.

The application of search algorithms in games is particu-
larly evident in path-finding, where game characters need to
navigate through intricate game worlds to reach their goals.
These algorithms enable characters to determine the shortest

or most optimal paths while considering various factors such
as obstacles, terrain, and dynamic changes in the environment.

Different search algorithms have been developed and ap-
plied in games, each with its strengths and limitations. Al-
gorithms such as Depth-First Search (DFS) and Breadth-First
Search (BFS) offer simple yet effective approaches for path-
finding. DFS explores paths depth-wise, while BFS explores
paths in a breadth-first manner. These algorithms provide a
foundation for understanding search techniques and serve as
benchmarks for more advanced algorithms. The Uniform Cost
Search (UCS) algorithm considers the cost associated with
each path and selects the one with the lowest cumulative cost.
It is particularly useful in games where movement costs vary
or where characters need to reach specific locations efficiently.
The A∗ search algorithm is widely used in games due to its
ability to find the shortest path while considering both the cost
and heuristic estimation of reaching the goal. A∗ combines
the advantages of UCS and heuristic search, making it a
powerful tool for path-finding in dynamic game environments.
Moreover, Iterative Deepening Depth-First Search (IDDFS)
combines depth-first search with iterative deepening, allowing
for efficient exploration of large search spaces while also
finding optimal paths. By applying these search algorithms,
game developers can create intelligent game characters that
can navigate complex environments, avoid obstacles, and make
strategic decisions based on their objectives and surroundings.
This enhances the realism and challenge of games, providing
players with engaging and immersive experiences.

A search problem includes many items including the search
space, start state, goal, search tree, actions, transition model,
path cost, and optimal solution. Search algorithms have cer-
tain properties that are used to determine their efficiencies,
such as completeness, optimality, time-complexity, and space-
complexity. These algorithms are divided into two categories.
The blind search that has not have any prior information about
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the search space such as BFS, UCS, DFS and IDDFS. The
heuristic search that has information about the search space
and the goal state such as A∗. Fig. 1 illustrates the categories
of search algorithms [3].

Fig. 1: Types of search algorithms.

This paper explores the application of search algorithms
in the context of the widely popular and classic Japanese
video game, PAC-Man [4] [5]. The game is to guide PAC-
Man through a closed maze, consuming all the dots, while
evading the ghosts that relentlessly pursue him. Beyond its
entertainment value, PAC-Man provides an intriguing problem
environment for testing and evaluating search algorithms. By
leveraging the challenges presented in PAC-Man, this paper
delves into the exploration of search algorithms, aiming to
analyze their effectiveness and performance within the game’s
context. The structure of this article is as follows. Section II
gives a description of five search algorithms. Section III gives
a description about the used mazes and the implementation of
the search algorithms. Section IV demonstrates the simulation
results, with discussion. Lastly, section V concludes the work.

II. SEARCH ALGORITHMS

A. Depth-First Search

The DFS algorithm explores a tree by traversing as far as
possible along each branch before backtracking. It starts at
an initial node and explores deeper into the tree by visiting
adjacent nodes until it reaches a dead end. It then backtracks
to the previous node and continues exploring any unvisited
adjacent nodes until all nodes have been visited. Fig. 2
illustrates the DFS algorithm. First, the searching starts at
the root node S and then goes to the branch where node
A is present. Then, it goes to node B, followed by node D.
However, after node D there is no children, so it retraces the
path in which it traversed and reach node B but now it goes
through the un-traced path to E, and repeats the same process
until reaching the goal node G.

While DFS has its advantages in terms of simplicity,
memory efficiency, and exploration of deep paths, it also has
limitations such as lack of completeness, suboptimal solutions,

Fig. 2: Depth-first search [3].

and potential inefficiency on wide and balanced trees. The
suitability of DFS depends on the specific problem domain
and the characteristics of the graph being explored.

In [6], DFS was compared to other algorithms such as BFS
and A∗ to determine the shortest path between nodes for a
mobile robot within various mazes. The authors concluded
that DFS did perform well in finding the shortest path and it
may provide longer paths. In [7], the authors presented the
design and development of a line maze solver robot based on
DFS. The results were acceptable and the robot was able to
solve a looped maze in 63.40 seconds and a non-looped maze
in 84.97 seconds. However, the robot fails to complete the
looped maze under certain conditions.

B. Breadth-First Search

The BFS is a graph traversal algorithm used to explore and
search for nodes in a tree. It starts at a given source node
and explores all the neighboring nodes at the current depth
level before moving to the nodes at the next depth level. It
iterates layer by layer until the goal is reached, using a queue
data structure that follows first-in first-out. Fig. 3 demonstrates
the iterations and decisions taken by BFS. It starts with the
source node S at layer 0 and visits all nodes of current layer
then traversing through the remaining layers to perform the
same operation until the goal node is reached [8].

BFS is complete as it guarantees finding a solution if one
exists, given that the tree is finite and connected. Since it
explores nodes in a breadth-first manner, it guarantees that
the first occurrence of a node during traversal is the shortest
path to reach that node. It only requires enough memory to
store the nodes in the current level being explored. It does
not store information about the entire graph or tree, which
makes it memory-efficient compared to other graph traversal
algorithms like DFS.

While BFS is memory-efficient during execution, it requires
additional memory to keep track of visited nodes and the
queue data structure. In graphs with a large number of nodes
and complex connections, the memory requirements can be
significant. In dense graphs, where the number of edges is
close to the maximum possible, BFS can have a higher time



Fig. 3: Breadth-first Search [3].

complexity compared to other algorithms like DFS. This is
because BFS visits all neighbors of a node before moving
to the next level, resulting in a larger number of nodes in
the queue. It explores nodes in a breadth-first manner, which
means it can be inefficient for large graphs with a high
branching factor. The number of nodes to be visited can grow
exponentially with the depth of the graph, leading to slower
execution times. It is not designed to find optimal solutions
in graphs with weighted edges. It does not consider the edge
weights and assumes all edges have the same cost.

Bidirectional BFS is an optimization of the standard BFS
algorithm. It performs two separate BFS searches: one starting
from the source node and the other starting from the target
node. The searches proceed simultaneously, with each search
exploring one level of nodes at a time. The algorithm termi-
nates when a node is discovered that has been visited by both
searches, indicating the shortest path has been found. It is a
powerful optimization for finding the shortest path between
two nodes in an unweighted graph. However, it may not be
suitable for graphs with complex edge weights or when there
are multiple target nodes [9].

C. Uniform Cost Search

The UCS traversal algorithm finds the path with the lowest
cost between a source node and a goal node in a weighted
graph. Unlike BFS or DFS, it takes into account the cost
associated with each transition between nodes. It is commonly
used in various applications, such as route planning, navigation
systems, and resource allocation, where finding the lowest-
cost path is crucial [10]. Fig. 4 shows the way that UCS
calculates the total cost from the initial node, S, to any of the
destination nodes [G1, G2, G3]. The directed vertices represent
the direction and cost of the path adding up to the overall cost
of the path which is a sum of all the paths.

The UCS is an optimal and complete algorithm when space
is an issue and requires no heuristics. It is used in maze
problems since it prioritizes the minimum cumulative cost

Fig. 4: Uniform-cost Search [3].

while the DFS algorithm gives maximum priority to maximum
depth [11]. Its main drawback is that it is only concerned about
the cost of the path and completely neglects the number of
steps involved in searching which can cause it to be stuck in an
infinite loop. Since UCS solely focuses on minimizing the cost,
it may continue to explore paths with lower costs indefinitely,
even if the number of steps required becomes unreasonably
large. This can occur when there are cycles or loops in the
graph, causing the algorithm to repeatedly revisit nodes and
never terminate.

D. Iterative Deepening Depth-First Search

The IDDFS is an uniformed search algorithm that combines
the benefits of DFS and BFS. Fig. 5 illustrates the operation
of the IDDFS among a tree. This algorithm performs DFS up
to a certain specified depth limit [12]. If a goal is not found at
a specified limit, then the search process will terminate. The
limit will be incremented by one, and the process will start
again until the goal is reached. In the case shown in Fig. 5,
the algorithm will find the goal after the fourth iteration.

The IDDFS is complete, and memory-efficient algorithm
that provide Optimal solution for unit-cost paths. Unfortu-
nately, it performs redundant work by re-exploring nodes at
each depth level, does not perform well in graphs with a high
branching factor, does not take advantage of memory sharing
between iterations, and does not consider edge weights or
costs, which can lead to suboptimal solutions or inefficient
exploration in such scenarios [13].

The authors in [14] compared IDDFS with Monte Carlo
Tree Search (MCTS). The algorithms were compared on the
premise of playing multi-agent visibility based pursuit-evasion
games. Results showed that both perform well while being
as algorithms for the pursuers, but IDDFS performs better as
algorithm for the evader. The difference in performance comes



Fig. 5: Iterative Deepening Depth-First Search [3].

down to the branching factor, IDDFs is better with smaller
branching factors, while MCTS is better with larger branching
factors.

E. A∗ Search

The A∗ is widely used for finding the shortest path between
two nodes in a graph, taking into account both the cost of the
path and an estimated heuristic value to guide the search [15].
It is quick and accurate when estimating a path. The heuristic
function value is represented by f(n) = g(n) + h(n), where
g(n) is the cost that is required to reach a target node from
the the root, and h(n) is the heuristic value.

Closed list and open list refer to two distinct data structures
used to keep track of the nodes during the A∗ search process.
The open list, known as fringe or frontier, holds the nodes
that have been discovered but not yet fully explored. These
are the nodes that are potential candidates for expansion and
further exploration. The open list is typically implemented
as a priority queue, where the nodes are ordered based on
their estimated total cost (the sum of the cost to reach the
node from the start node and the estimated cost to reach the
goal node). The node with the lowest estimated total cost is
selected for expansion first. The closed list, explored set, stores
the nodes that have been fully expanded or explored. Once a
node is expanded, it is moved from the open list to the closed
list to indicate that it has been processed. The closed list is
used to avoid revisiting nodes that have already been explored,
preventing redundant exploration and potential infinite loops.
It helps ensure that each node is expanded only once during
the search. During the A∗ search algorithm, the open list is
initially populated with the start node, and the closed list is
empty. The algorithm then proceeds by iterative selecting the
node with the lowest estimated total cost from the open list,
expanding it, and adding its neighboring nodes to the open
list. As nodes are expanded, they are moved from the open
list to the closed list. Both lists are illustrated in Fig. 7, and
6.

The A∗ search is complete and optimal, but it consumes a
huge amount of memory as each explored node to be kept in
memory, resulting in a space complexity. In [16], the authors

Fig. 6: A∗ Search Open List [3].

Fig. 7: A∗ Search Closed List [3].

used a combination of A∗ and Navigation mesh to optimize the
shortest path-finding problem on enemies/ghosts of the PAC-
Man game. The results showed that the movement of ghosts in
catching PAC-Man using the A* algorithm was good in terms
of the ghosts taking less steps to reach the goal.

III. PROPOSED ALGORITHM

This work examined the performance of the five search al-
gorithms, mentioned in section II, with respect to the different
types of mazes in the PAC-Man game. The best path is to be
selected based on the cost in each algorithm.

The A∗ search algorithm is demonstrated by the code
that follows. Prior to the main function, the code specifies
a heuristic function since A∗ is an informed search. In the
event that there is no route cost, this heuristic function is null
and has only one line that returns a zero. A suite of utilities
are included in the fringe package, which has been used to
implement the primary function. The least-cost path from a
given (initial - goal) node may be found with this package.
Expanded nodes are then pushed to the visited queue after a
queue and array are created to hold the visited nodes. When



one state remains after all nodes have been verified and popped
from the isEmpty list, the goal state is returned. If not, the
visited list iterates continuously.

def nullHeuristic(state, problem=None): """
A heuristic function estimates the cost from the

current state to the nearest
goal in the provided SearchProblem. """
return 0

def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined

cost and heuristic first."""

# create fringe to store nodes
fringe = util.PriorityQueue()
# track visited nodes
visited = []
# push initial state to fringe
fringe.push((problem.getStartState(), [], 0),

heuristic(problem.getStartState(),problem))
while not fringe.isEmpty():

node = fringe.pop()
state = node[0]
actions = node[1]
# goal check
if problem.isGoalState(state):

return actions

if state not in visited:
visited.append(state)
# visit child nodes
successors = problem.getSuccessors(state)
for child in successors:

# store state, action and cost = 1
child_state = child[0]
childaction = child[1]
if child_state not in visited:

# add child nodes
childact = actions + [childact]
cost=

problem.getCostOfActions(childact)
fringe.push((child_state, childact,

0), cost +
heuristic(child_state, problem))

IV. SIMULATION RESULTS

The path finding algorithms: DFS, BFS, UCS, IDDFS, and
A∗ are implemented to navigate tiny, medium, and big PAC-
Man mazes, shown in Fig. 8a, 8b, and 8c; respectively.

a) Tiny Maze: The algorithms BFS, UCS, and A∗ fol-
lowed the yellow path to traverse the maze and consume the
dot marked in green, which is their objective, whereas DFS
and IDDFS take the aqua path. Table I provides the outcomes
of each algorithm.

b) Medium Maze: In order to navigate the medium maze
and attain the goal of eating the green-circled dot, the BFS,
UCS, IDDFS, and A∗ algorithms followed the yellow path,
whereas DFS followed the aqua path. Table I provides the
outcomes of each algorithm.

c) Big Maze: The five algorithms traversed the big maze
using the identical yellow path in order to reach the objective
and consume the green-circled dot. Table I provides the
outcomes of each algorithm.

(a) Navigating tiny maze. (b) Navigating medium maze.

(c) Navigating big maze.

Fig. 8: Navigating maze with different sizes.

The three top-performing algorithms in the tiny maze, A∗,
BFS, and UCS, each had a cost of 8 and a score of 502,
according to the results. However, A∗ stood out due to its
reduced number of expanded nodes, which was 14. The same
three algorithms: BFS, UCS, and A∗ had the highest score of
442 for the medium maze. However, the A∗ search performed
best, with a lower cost of 68 and the fewest expanded nodes
(219). But in the big maze, all five algorithms—DFS, BFS,
UCS, IDDFS, and A∗ search—had the same score of 300 and
cost of 210. DFS, however, fared the best because it had the
fewest expanded nodes—390—while A∗ search had the most
expanded nodes—538, to be exact. This demonstrates how the
DFS works better in expansive settings with solutions located
far from the source.

V. CONCLUSION

AI-driven search algorithms are now a basic feature of game
development, allowing avatars to traverse virtual environments
and choose the best path. Search algorithms, ranging from
basic techniques like DFS and BFS to more complex methods
like UCS, A∗, and IDDFS, are essential to the development
of intelligent and dynamic gaming experiences. PAC-Man is
still a fun game for players to play, but it also provides
an invaluable framework for assessing and contrasting search
algorithms, which makes it a fascinating and difficult problem
environment for AI researchers and game developers.

In this paper, we used AI search algorithms to present
a path-finding computer game inspired by PAC-MAN. We
described each algorithm in detail and compiled the simulation



TABLE I: Five search algorithms performance in the three mazes.

Search Algorithm Tiny maze Med maze Big maze
Score Cost Extended Nodes Score Cost Extended Nodes Score Cost Extended Nodes

DFS 500 10 15 380 130 146 300 210 390
BFS 502 8 15 442 68 269 300 210 620
UCS 502 8 15 442 68 268 300 210 619

IDDFS 500 10 86 440 70 8635 300 210 60211
A∗ 502 8 14 442 68 219 300 210 538

results for all path-finding algorithms across various environ-
ments according to how well they performed in terms of score,
cost, and node expansion, which showed how much memory
was used. The A∗ algorithm proved to be the most effective
in two of the environments and was deemed efficient in the
third, according to the findings.

Beyond gaming, these algorithms are offering solutions to
path-finding, optimization, and search problems in a wide
range of fields, including web crawling, social network anal-
ysis, compiler design, routing, resource allocation, planning,
robotics, and puzzle solving. Their efficient and effective
exploration of search spaces makes them valuable tools in
various real-world applications. It is important to consider the
trade-off between time complexity and memory consumption
when selecting an algorithm based on the specific problem
requirements and constraints, which can be covered in a further
work.
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