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Abstract—In the realm of web security, there is a growing
shift towards harnessing machine learning techniques for Cross-
Site Scripting (XSS) vulnerability detection. This shift recognizes
the potential of automation to streamline identification processes
and reduce reliance on manual human analysis. An alternative
approach involves security professionals actively executing XSS
attacks to precisely pinpoint vulnerable areas within web ap-
plications, facilitating targeted remediation. Furthermore, there
has been a growing interest in machine learning-based methods
for creating XSS payloads in academic and research domains.
In this research, we introduce a new model for generating
XSS payloads, utilizing a combination of auto-regressive and
generative AI models to craft malicious scripts intended to exploit
potential vulnerabilities. Our approach to XSS vulnerability
detection encompasses both frontend and backend code, providing
organizations with a comprehensive means to enhance web
application security.

I. INTRODUCTION

Cross-Site Scripting (XSS) attacks fall under the category
of injection attacks. In these attacks, malicious scripts are
introduced into websites that users trust. They occur when an
attacker takes advantage of vulnerabilities in a web application
by inserting harmful code, typically in the form of a script
that runs in a web browser, and then shares it with other users.
The success of XSS attacks is often due to weaknesses in web
applications that do not properly check or secure user inputs
before displaying them to others [1].

The injected malicious script deceives a user’s web browser
into thinking it comes from a legitimate source, causing the
script to run. Consequently, the attacker gains unauthorized
access to sensitive information stored in the user’s browser,
such as cookies or session tokens. Moreover, the malicious
script can alter the content of the web page, potentially leading
to serious consequences.

Traditional methods for identifying Cross-Site Scripting
(XSS) vulnerabilities have relied on manual analysis conducted
by human experts [1], [2]. This approach necessitates scrutiniz-
ing both the backend and frontend code of web applications, a
process that is not only time-consuming but also comes with
substantial financial costs. The need for human intervention has

been a significant bottleneck in addressing XSS vulnerabilities
effectively [3].

In recent times, there has been a shift towards utilizing
machine learning techniques to detect XSS vulnerabilities [4]–
[6]. This shift acknowledges the potential of automation to
streamline the identification process and reduce the reliance
on human expertise. However, an alternative perspective on
addressing the XSS problem has emerged: the idea of conduct-
ing red-teaming attacks to actively attempt XSS exploitation.
By attempting to execute XSS attacks, security professionals
can pinpoint the exact areas within web applications that are
susceptible to such attacks.

Machine learning-based XSS payload generation has gained
attention and popularity in the academic and research litera-
ture [7], [8]. This method focuses on automating the creation
of malicious scripts that can trigger XSS vulnerabilities. In the
context of this research paper, we propose a novel model for
XSS payload generation that leverages a combination of auto-
regressive models and generative AI models. Auto-regressive
models, known for their robustness and versatility, have played
a pivotal role in the development of large language models like
ChatGPT and Bard. Our approach aims to harness the power of
these models to enhance XSS detection and mitigation efforts
in web application security.

Our proposed model offers a comprehensive approach to
XSS vulnerability detection within an organization’s web-based
system. It begins by taking into account both the frontend
and backend code of the system. These components are
subjected to rigorous analysis using auto-regressive models,
which excel at processing and understanding complex code
structures. Subsequently, the results of these individual analyses
are combined, providing a holistic view of the web application’s
security posture.

This combined analysis then serves as the foundation for
automating the creation of XSS payloads through the utilization
of generative AI techniques. By leveraging generative AI, our
model generates malicious scripts designed to exploit poten-
tial vulnerabilities identified during the analysis phase. This
automated process significantly accelerates the identification of
XSS vulnerabilities compared to traditional manual inspection
methods.
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Section II presents required background information related to
cross-site scripting and large language models, Section III
details the proposed architecture – LL-XSS. Results and
discussion are presented in Section IV, Section V examines
related work within the field, and Section VI concludes the
paper.

II. BACKGROUND

A. Cross-site Scripting

1) Principles of Cross-Site Scripting: Cross-Site Scripting
(XSS) vulnerabilities represent a critical security issue within
web applications. Essentially, XSS is a type of injection attack
where malicious actors inject code, typically in the form of
scripts, into web pages viewed by other users. This code can
execute within the context of the victim’s browser, potentially
leading to various malicious actions, such as data theft, session
hijacking, or defacement of the website [1], [2].

These vulnerabilities are primarily caused by developers
failing to implement effective input validation and output
encoding mechanisms at multiple levels of their applications.
When developers do not properly filter and sanitize user inputs,
attackers can exploit this weakness to insert their own code,
which is then executed in unsuspecting users’ browsers. For
instance, if an attacker inserts a payload like

<img\%20src=1\%20onerror=alert(’hacked’)>

into the parameters of a GET/POST request, it could trigger a
pop-up dialog on the web page, demonstrating the successful
exploitation of the vulnerability and the execution of the
attacker’s malicious code.

2) Components of XSS Payload: Though, the XSS attack
vectors are diverse and numerous, are not randomly generated;
they are meticulously crafted by attackers to exploit vulner-
abilities in web applications. These attack vectors adhere to
specific semantics and characteristics that make them effective
in compromising the security of a website or web application.
At their core, the essence of an XSS attack vector is to contain
the malicious code that will be executed within a user’s browser.
This code can serve various malicious purposes, including
stealing sensitive user information, hijacking user sessions,
defacing web pages, or spreading malware.

One critical aspect of creating an effective XSS attack vector
is ensuring that its structure aligns with the context of the output
point within the web application. Attackers carefully consider
where the payload will be injected, whether it’s within a script
tag, an HTML attribute, or a JavaScript function call. The
attack vector must be tailored to the specific context to ensure
that the injected code executes as intended. This contextual
awareness is a key element that sets successful XSS attacks
apart from failed attempts.

3) Payload Injection Location: XSS attacks can manifest
in various contexts within web applications, each offering
attackers different opportunities to exploit vulnerabilities. In this
research, we explore several typical contexts where XSS attacks
may occur, recognizing that this list is not comprehensive:

1) Inside HTML Tag Body: In this context, an attacker can
inject malicious code directly into the body of an HTML
element. For example:
<p>...some text... <script>alert(’XSS’)
;</script></p>

2) HTML Tag Attribute Values: Attackers can also insert
malicious code into the values of HTML tag attributes.
For instance:
<a href="javascript:alert(’XSS’)
">Click me</a>

3) Entire HTML Tag: An attacker can entirely replace or
manipulate HTML tags to execute malicious actions.
Here’s an example:
<img src="invalid-image" onerror="alert
(’XSS’)">

4) HTML Comments: Attackers might exploit HTML com-
ments to hide malicious code. For example:
<!-- <script>alert(’XSS’);</script> -->

5) JavaScript Context: In a JavaScript context, an attacker
may inject malicious code that executes when a vulnera-
ble web page is loaded. For example, an attacker could
inject the following JavaScript code into a vulnerable
input field:
<img src=’x’ onerror=’alert("XSS")’>

When the web page containing this input field is loaded,
the injected code within the onerror attribute of the
<img> tag will trigger a pop-up alert with the message
”XSS”. This demonstrates how attackers can exploit
JavaScript contexts to execute malicious code within
web applications.

In essence, XSS attacks are not arbitrary; they are the
result of a deliberate and strategic effort by attackers who
understand the intricate details of web application security.
Defenders must similarly be aware of these attack vectors and
employ comprehensive security practices, including automatic
payload generation, to identify and address these vulnerabilities
effectively within their applications.

B. Large Language Models

Large Language Models (LLMs), represent a category of ma-
chine learning models proficient in processing and generating
natural language text. These models commonly undergo training
on extensive corpora of text data and leverage deep learning
methodologies to grasp the intricacies of linguistic patterns
and structures. The evolution of LLMs reached a significant
milestone in 2017 with the advent of the Transformer model [9].
The Transformer’s breakthrough capability included the ability
to capture long-range linguistic dependencies effectively and
enabled parallel training across multiple Graphics Processing
Units (GPUs), thereby facilitating the training of substantially
larger models.

These models acquire a deep understanding of the complex
patterns and connections within the data, empowering them
to generate fresh content mirroring the style and traits of
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Fig. 1: Porposed Architecture of the LL-XSS Autoregressive Model

a particular author or genre. The process commences with
pre-training, where the LLM is immersed in an extensive
dataset comprising diverse text sources like books, articles, and
websites. Employing unsupervised learning, the model predicts
the subsequent word in a sentence by analyzing the contextual
cues of preceding words. This process equips the model with a
grasp of grammar, syntax, and semantic correlations, enabling
it to produce coherent and contextually relevant text [10].

Transformers [9] represent the current cutting-edge deep
learning models for processing real-world data using attention
mechanisms in both generative and discriminative machine
learning. These models serve as the basis for renowned deep
learning models, including BERT [11], GPT-3 [12], DALL-
E [13], and ChatGPT [14], which incorporate transformer
modules and reinforcement learning.

Unlike the Convolutional Neural Networks (CNNs), trans-
former models employ self-attention mechanisms that enable
the model to assign varying degrees of importance to different
segments of the input sequence, depending on their relevance to
the current task. This capacity enables the model to comprehend
the context and interconnections among different segments
of the input sequence, a critical factor for tasks like XSS
payload generation [9]. The attention mechanism is essentially
determined by the equation 1.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

The attention model is calculated by querying a specific
feature of interest, represented by the query Q, against a
collection of masks, represented by K. Possible keys that
can be queried are represented by dk, and division by the
square root of this value yields a hard maximum. This is
then processed through the softmax function to determine
probabilities. Different values that keys Ki can assume are
compiled in V . For a more comprehensive insight into the
attention model, we recommend referring to the original
transformer paper [9].

III. PROPOSED ARCHITECTURE: LL-XSS

In this section, we provide an in-depth description of our
novel approach for generating XSS payloads using auto-
regressive models. The architecture of our proposed model
is visually illustrated in Figure 1, which outlines the key
components and their interactions.

The model receives inputs from two primary sources:
frontend code and backend code. The frontend code comprises
the HTML and JavaScript components of the entire website.
It’s worth noting that we omit CSS from this input as it is not
pertinent to the XSS payload generation process.

The backend code, on the other hand, has the potential to
encompass code written in various programming languages.
However, for the purposes of our experiments, we have limited
our focus to Node.js code.

To facilitate effective training of the auto-regressive model,
we take a backend code repository as input and generate a
tokenized version of the entire source code. To enhance the
model’s understanding of the input structure, we incorporate
positional encodings before feeding it into the model. These
positional encodings serve to provide context and help the
model discern the relationships between different code elements
and their positions within the source code. This preprocessing
step is crucial in ensuring that the model can effectively learn
and generate XSS payloads based on the input code.

The process continues as the flattened sequences, along
with their respective positional encodings, are directed into
a multi-attention head model. This model consists of several
layer normalization steps and culminates in a final multi-layer
perceptron. Notably, our model incorporates several innovative
concepts, including the use of skip connections.

Skip connections play a pivotal role in our model by
circumventing the issue of the vanishing gradient problem. This
problem often hampers the learning process in large language
models with extensive context. By facilitating the flow of
gradients through the network, skip connections enable more
effective learning and convergence. The transformer encoder



is responsible for creating an embedding of the input from the
backend codebase. This embedding captures essential features
and relationships within the code.

A similar procedure is executed for the frontend codebase,
where the input is processed through its own transformer model.
Essentially, the outputs of these two separate instances of the
transformer models are concatenated to generate a combined
embedding. This merged embedding exhibits twice the number
of dimensions but, more importantly, encapsulates the intricate
relationships between tokens in both the frontend and backend
code. This rich representation enables the model to comprehend
the connections and dependencies between code elements from
different sources, laying the foundation for effective XSS
payload generation.

The concatenated embedding resulting from the frontend and
backend code is subsequently supplied as input to a custom
generative model, which is specifically designed to generate
XSS payloads as its output.

It is important to note that, initially, before any training
takes place, the model’s output lacks valid input and may not
conform to desired syntax or functionality standards. During the
training process, the loss is backpropagated not only through
the generative part of the model but also to the frontend
and backend transformers. Loss of the model is computed
as follows:

L(T,G) = Ex∼pdata(x)[log(T (x))]

+Ez∼pz(z)[log(1− T (G(z)))]

Where L(T,G) represents the overall loss function. T
is the transformer model and G is the generator network,
Ex∼pdata(x) represents the expectation over real data samples
and Ez∼pz(z) represents the expectation over noise samples.
This comprehensive feedback loop ensures that the entire model
adapts and learns from the generated outputs.

After undergoing training for several epochs, the model
exhibits the capability to generate not only syntactically
valid XSS payloads but also offers valuable insights into the
codebases being analyzed. These insights can be instrumental
in identifying potential vulnerabilities and enhancing the overall
security of web applications.

In the subsequent section, we present the details of our
experiments and elaborate on the outcomes and outputs
generated by the model during these experimental trials.

IV. RESULTS AND DISCUSSIONS

In our experiments, we conducted our analysis using the
well-known vulnerable web application called “OWASP Juice
Shop”. Juice Shop is renowned for harboring numerous known
vulnerabilities, as it was intentionally designed to serve as
a testing ground for uncovering security flaws within web
applications.

For our experiments, we supplied the source code of Juice
Shop, which encompasses both the backend logic and the
frontend templates, as input to our model. Initially, prior to
any training, the generator component of our model produced
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outputs that were often incoherent and, in many cases, syntacti-
cally incorrect. This behavior was in line with our expectations,
given the untrained nature of the model.

To quantitatively assess the quality of the payloads generated
by our model, we devised a series of correctness tests. These
tests were designed to parse the produced payloads and evaluate
their validity, primarily focusing on whether they constituted
valid JavaScript code. To achieve this, we employed the
widely-used tool ESPRISMA, which specializes in tokenizing
and parsing JavaScript (or formally ECMAScript) code. The
use of ESPRISMA allowed us to systematically evaluate the
generated payloads for syntactical correctness, contributing
to the overall reliability and effectiveness of our model in
producing meaningful XSS payloads.

After each training iteration, we generated precisely 100
payloads, and the payloads that were syntactically correctly
formatted were marked as “pass”. The pass rate for each
iteration was calculated and is reported in Figure 2. This
measure of functional correctness serves as a standard metric
that has been employed in previous research to evaluate the
accuracy of code generation from large language models.
Table I details some of the correctly formated payload generated
by our model.

While this approach provides us with a quantitative gauge
of syntactic correctness in the generated code, the effectiveness
of the payloads themselves was assessed manually. For this
evaluation, we analyzed the payloads generated at the conclu-
sion of the training and manually extracted payloads, along
with the endpoints, that successfully identified vulnerabilities
within the Juice Shop application.

Our analysis led to the discovery of reflective XSS attacks
and stored XSS attack. However, it’s important to note that,
with our current model and training methodology, we were
unable to identify DOM-based XSS vulnerabilities, despite the
presence of known vulnerabilities of this type within the Juice
Shop application. We speculate that this limitation may be
attributed to our model’s lack of round-trip integration tests. To
potentially address this limitation, we envision incorporating a
comprehensive quality assurance (QA) pipeline into our model,
which may enhance our ability to detect DOM-based XSS
vulnerabilities.



XSS Context LL-XXS generated payload
Inside HTML Tag Body
1. Image Source (data URI):

<img src="data:image/svg+xml,<svg/onload=alert(’XSS’)>" />

HTML Tag Attribute Values
2. Anchor Tag Href Attribute (data URI):

<a href="data:text/html,&lt;img%20src=x%20onerror=alert(’XSS’)
&gt;">Click me</a>

HTML Tag
3. IFrame Tag (data URI):

<iframe src="data:text/html,<img src=x onerror=alert(’XSS’)>
"></iframe>

HTML Comments
4. HTML Comment with Data URI:

<!-- <img src="data:text/html,<img src=x onerror=alert(’XSS’)>
"> -->

JavaScript
5. Script Tag (data URI):

<script src="data:text/javascript,alert(’XSS’)"></script>

TABLE I: Examples for LL-XXS Generated Payload

This exciting avenue for future research represents an
important direction for our work, as it holds the potential to
further refine and strengthen our approach to XSS vulnerability
detection and mitigation.

A. LL-XSS generated payload
The LL-XSS generated payloads target different contexts

and endpoints within the Juice Shop application. For unstance,
the reflected XSS exploits links with payloads in anchor tag
href attributes. While the persistent XSS injects code into
input fields, styles, and more, compromising user data. These
examples showcase the diverse attack vectors for executing
JavaScript within the experimental web application. Below
we discuss some representitive indvidual samples of payload
generated by our model.

1) Image Source (data URI):
The first payload given in Table I utilizes a data URI
scheme within an <img> tag’s src attribute. The data
URI contains an SVG image with an onload event that
triggers the alert(’XSS’) JavaScript code when the
image loads. Attackers can use this technique to execute
malicious code when the image is rendered.

2) Anchor Tag Href Attribute (data URI):
Paylod 2 showcases a data URI within the href attribute
of an anchor <a> tag. The data URI contains an HTML
snippet with an <img> tag that includes an onerror
event to trigger the alert(’XSS’) code when the link
is clicked.

3) IFrame Tag (data URI):
Payload 3 in the list, utilizes an <iframe> element
with a data URI in the src attribute. The data URI
encodes an HTML snippet with an <img> tag and an
onerror event, executing the alert(’XSS’) code
within the frame.

4) HTML Comment with Data URI:
The LL-XSS also generated a payload (payload 4) that
uses an HTML comment to conceal a data URI containing
malicious code. When the comment is processed, the
code within the data URI executes, potentially leading
to security vulnerabilities.

5) Script Tag (data URI):
Payload 5 uses one of the most obviuos technique used
in XSS attacks. A <script> tag’s src attribute is
used with a data URI to load JavaScript code that
triggers the alert(’XSS’) when the script is executed.
This technique allows attackers to inject and execute
JavaScript code.

V. RELATED WORK

In the domain of injection vulnerability analysis, conven-
tional approaches, as evidenced in various studies focusing on
XSS [15], SQLi [16], and XML injection [17] predominantly
depend on the use of pre-existing payloads. These methods
aim to detect vulnerabilities by employing known malicious
patterns. In contrast, the proposed LL-XSS stands out as it
follows a dynamic and proactive approach, placing a lesser
emphasis on prior payload data.

Studies in [18] and [19], leverage dynamic data analysis
to identify potentially vulnerable input parameters. Similarly,
researchers in [20], [21] systematically extract injection points
and rigorously test them with known XSS attack strings.
Furthermore, [22] introduces a novel approach, using cus-
tom browsers for taint tracking to create escape strings for
addressing DOM-based XSS vulnerabilities.

Trickel et al. introduced a semi-automatic fuzzing
scheme [23], but it involves intensive manual log and response
analysis. Garn et al. presented an attack grammar mode with
constraints to enhance web security testing [24]. Van Rooij



et al. introduced a fuzzy reasoning-based fuzzing method
for discovering XSS vulnerabilities, primarily effective for
reflective XSS [25]. Muhammad et al. [26] used vulnerability
features for automated black-box web vulnerability scanning.
Melicher et al. employed taint tracking to effectively detect
DOM-based XSS vulnerabilities [5], demonstrating its efficacy
in experiments. The proposed LL-XSS model distinguishes
itself with its dynamic and proactive approach, enhancing its
effectiveness and adeptness in addressing emerging vulnerabil-
ities.

VI. CONCLUSION

In conclusion, our research presents a novel approach to
detecting XSS vulnerabilities in web applications, with a
specific focus on the context of automated XSS payload
generation. Leveraging generative AI, our model swiftly
generates malicious scripts that expose potential vulnerabilities
identified during analysis, greatly expediting the identification
process compared to manual methods. This advancement is
particularly valuable as demonstrated by the diverse payload
examples, revealing various attack scenarios. Our model’s
strength lies in its ability to generate subtle malicious scripts
that evade traditional security measures. This enables accurate
vulnerability detection and empowers security professionals
to fortify web application security, reducing real-world attack
risks.
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