• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorProfilesView

    My Account

    Login

    Statistics

    Display statistics

    A complexity efficient PAPR reduction scheme for FBMC-based VLC systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    A complexity efficient PAPR ...
    Size:
    1.632Mb
    Format:
    PDF
    Download
    Author
    Radwa A Roshdy
    Hussein, Aziza cc
    Mohamed M Mabrook
    Mohammed A Salem
    Subject
    Visible Light Communication
    Filter Bank Multicarrier
    Computational Complexity
    Date
    2023-03-31
    
    Metadata
    Show full item record
    Abstract
    Visible light communication based on a filter bank multicarrier holds enormous promise for optical wireless communication systems, due to its high-speed and unlicensed spectrum. Moreover, visible light communication techniques greatly impact communication links for small satellites like cube satellites, and pico/nano satellites, in addition to inter-satellite communications between different satellite types in different orbits. However, the transmitted visible signal via the filter bank multicarrier has a high amount of peak-toaverage power ratio, which results in severe distortion for a light emitting diode output. In this work, a scheme for enhancing the peak-to-average power ratio reduction amount is proposed. First, an algorithm based on generating two candidates signals with different peakto-average power ratio is suggested. The signal with the lowest ratio is selected and transmitted. Second, an alternate direct current-biased approach, which is referred to as the addition reversed method, is put forth to transform transmitted signal bipolar values into actual unipolar ones. The performance is assessed through a cumulative distribution function of peak-to-average power ratio, bit error rate, power spectral density, and computational complexity. The simulation results show that, compared to other schemes in literature, the proposed scheme attains a great peak-to-average power ratio reduction and improves the bit the error rate performance with minimum complexity overhead. The proposed approach achieved about 5 dB reduction amount compared to companding technique, 5.5 dB compared to discrete cosine transform precoding, and 8 dB compared to conventional direct current bias of an optical filter bank multicarrier. Thus, the proposed scheme reduces the complexity overhead by 15.7% and 55.55% over discrete cosine transform and companding techniques, respectively
    Department
    Electrical and Computer Engineering
    Publisher
    Polish Academy of Sciences and Association of Polish Electrical Engineers in cooperation with Military University of Technology
    Journal title
    Opto-Electronics Review
    DOI
    https://doi.org/10.24425/opelre.2023.144919
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.24425/opelre.2023.144919
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.