• Login
    View Item 
    •   Home
    • Supply Chain Management
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Supply Chain Management
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Almaktoom, Abdulaziz cc
    Khan, Hajra
    Mian Qaisar, Saeed cc
    Waqar, Asad
    Krichen, Moez cc
    Nizami, Imran
    Subject
    battery autonomy
    battery size
    feature selection
    Date
    2022-10-24
    
    Metadata
    Show full item record
    Abstract
    Microgrids are becoming popular nowadays because they provide clean, efficient, and lowcost energy. Microgrids require bulk storage capacity to use the stored energy in times of emergency or peak loads. Since microgrids are the future of renewable energy, the energy storage technology employed should be optimized to provide power balancing. Batteries play a variety of essential roles in daily life. They are used at peak hours and during a time of emergency. There are different types of batteries i.e., lithium-ion batteries, lead-acid batteries, etc. Optimal battery sizing of microgrids is a challenging problem that limits modern technologies such as electric vehicles, etc. Therefore, it is imperative to assess the optimal size of a battery for a particular system or microgrid according to its requirements. The optimal size of a battery can be assessed based on the different battery features such as battery life, battery throughput, battery autonomy, etc. In this work, the mixed-integer linear programming (MILP) based newly generated dataset is studied for computing the optimal size of the battery for microgrids in terms of the battery autonomy. In the considered dataset, each instance is composed of 40 attributes of the battery. Furthermore, the Support Vector Regression (SVR) model is used to predict the battery autonomy. The capability of input features to predict the battery autonomy is of importance for the SVR model. Therefore, in this work, the relevant features are selected utilizing the feature selection algorithms. The performance of six best-performing feature selection algorithms is analyzed and compared. The experimental results show that the feature selection algorithms improve the performance of the proposed methodology. The Ranker Search algorithm with SVR attains the highest performance with a Spearman’s rank-ordered correlation constant of 0.9756, linear correlation constant of 0.9452, Kendall correlation constant of 0.8488, and root mean squared error of 0.0525.
    Department
    Supply Chain Management
    Publisher
    MDPI
    DOI
    https://doi.org/10.3390/en15217865
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.3390/en15217865
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.