An Efficient Encryption and Compression of Sensed IoT Medical Images Using Auto-encoder
Abstract
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice. Encryption of medical images is very important to secure patient information. Encrypting these images consumes a lot of time on edge computing; therefore, the use of an auto-encoder for compression before encoding will solve such a problem. In this paper, we use an auto-encoder to compress a medical image before encryption, and an encryption output (vector) is sent out over the network. On the other hand, a decoder was used to reproduce the original image back after the vector was received and decrypted. Two convolutional neural networks were conducted to evaluate our proposed approach: The first one is the auto-encoder, which is utilized to compress and encrypt the images, and the other assesses the classification accuracy of the image after decryption and decoding. Different hyperparameters of the encoder were tested, followed by the classification of the image to verify that no critical information was lost, to test the encryption and encoding resolution. In this approach, sixteen hyperparameter permutations are utilized, but this research discusses three main cases in details. The first case shows that the combination of Mean Square Logarithmic Error (MSLE), ADAgrad, two layers for the auto-encoder, and ReLU had the best auto-encoder results with a Mean Absolute Error (MAE) = 0.221 after 50 epochs and 75% classification with the best result for classification algorithm. The second case shows the reflection of auto-encoder results on the classification results which is a combination of MeanDepartment
Computer SciencePublisher
TECH SCIENCE PRESSJournal title
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCESae974a485f413a2113503eed53cd6c53
10.32604/cmes.2022.021713