• Login
    View Item 
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    A novel automated tower graph based ECG signal classification method with hexadecimal local adaptive binary pattern and deep learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Subasi, Abdulhamit
    Dogan, Sengul
    Tuncer, Turker
    
    Metadata
    Show full item record
    Abstract
    Electrocardiography (ECG) signal recognition is one of the popular research topics for machine learning. In this paper, a novel transformation called tower graph transformation is proposed to classify ECG signals with high accuracy rates. It employs a tower graph, which uses minimum, maximum and average pooling methods altogether to generate novel signals for the feature extraction. In order to extract meaningful features, we presented a novel one-dimensional hexadecimal pattern. To select distinctive and informative features, an iterative ReliefF and Neighborhood Component Analysis (NCA) based feature selection is utilized. By using these methods, a novel ECG signal classification approach is presented. In the preprocessing phase, tower graph-based pooling transformation is applied to each signal. The proposed one-dimensional hexadecimal adaptive pattern extracts 1536 features from each node of the tower graph. The extracted features are fused and 15,360 features are obtained and the most discriminative 142 features are selected by the ReliefF and iterative NCA (RFINCA) feature selection approach. These selected features are used as an input to the artificial neural network and deep neural network and 95.70% and 97.10% classification accuracy was obtained respectively. These results demonstrated the success of the proposed tower graph-based method.
    Department
    Computer Science
    Publisher
    Springer
    Journal title
    Journal of Ambient Intelligence and Humanized Computing
    DOI
    https://doi.org/10.1007/s12652-021-03324-4
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1007/s12652-021-03324-4
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.