• Login
    View Item 
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Automated and accurate focal EEG signal detection method based on the cube pattern

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Tuncer, Turker
    Dogan, Sengul
    Subasi, Abdulhamit cc
    M. Cagri, Kaya
    Subject
    Electroencephalography Signals
    classification model
    feature extraction
    Multi-scale principal component analysis
    Date
    2023-02-01
    
    Metadata
    Show full item record
    Abstract
    Electroencephalography (EEG) signals are named letters of the brain, and their translation is a complex issue. This work recommends a new hand-crafted feature-based EEG signal classification model, including a new local histogram-based feature generation function, the cube pattern. The recommended model comprises preprocessing/signal denoising, feature extraction using the presented cube pattern, neighborhood component analysis-based feature selection, and classification by employing 25 classifiers. Multi-scale principal component analysis (MSPCA) is applied to the raw EEG signals in the denoising phase. Afterward, the denoised EEG signals are forwarded to the feature extraction method. Next, tunable q-factor wavelet transform (TQWT) is employed to denoise signals for decomposition, and levels/sub-bands are generated. The selected features are classified from 25 classifiers by using the MATLAB Classification Learning tool. The presented model is applied to a commonly used EEG signal dataset. Variable performance evaluation metrics are used to test the performance of each classifier. Per the calculated results, the presented model reached over 99% accuracy using 24 of the 25 classifiers, and a comprehensive benchmark is obtained. The calculated results and obtained findings denote the high performance of the presented cube pattern and the neighborhood component analysis-based model.
    Department
    Computer Science
    Publisher
    Springer US
    Journal title
    Multimedia Tools and Applications
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.