• Login
    View Item 
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Novel finger movement classification method based on multi-centered binary pattern using surface electromyogram signals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Tuncer, Turker
    Dogan, Sengul
    Subasi, Abdulhamit cc
    Subject
    Multi-centered Binary Pattern (MCBP)
    Surface Electromyogram (sEMG)
    Finger Movements Classification
    Machine Learning
    Date
    January 2022
    
    Metadata
    Show full item record
    Abstract
    The number of individuals who have lost their fingers in our world is quite high and these individuals experience great difficulties in performing their daily work. Finger movements classification and prediction are one of the hot-topic research areas for biomedical engineering, machine learning and computer sciences. This study purposes finger movements classification and prediction. For this purpose, a novel finger movements classification method is presented by using surface electromyogram (sEMG) signals. To accurately classify these movements, a novel binary pattern like textural feature extractor is presented and this textural micro pattern is called as multi-centered binary pattern (MCBP). In the MCBP, five odd-indexed values of a block are utilized as center. The proposed MCBP based multileveled finger movements classification method evaluate by three cases. In the first case, the raw sEMG signals are utilized as input. In the second and third case, sEMG signals are divided into frames and these frames are utilized as input. A two-layered feature selector is used to choose the most valuable features. The purpose of using these two feature selectors together is to choose the optimum number of features. In the classification phase, two fine-tuned classifiers have been used and they are k-nearest neighbor (k-NN) and support vector machine (SVM). The proposed MCBP based method achieved 99.17%, 99.70% and 99.62% classification rates using SVM classifier according to Case 1, Case 2 and Case3 respectively. The results show that the study is a highly accurate method.
    Department
    Computer Science
    Journal title
    Biomedical Signal Processing and Control
    DOI
    https://doi.org/10.1016/j.bspc.2021.103153
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1016/j.bspc.2021.103153
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.