• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Transient Performance of Voltage Source Converter in V2G and G2V Electric Vehicles Application

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Ahmed, Toqeer
    Mian Qaisar, Saeed
    Waqar, Asad
    Hussain, Tanveer
    Iqbal, Ahsan
    Subject
    Electric vehicles; voltage source converters; vehicle- to-grid; grid- to-vehicle; fractional order sliding mode control; state of charge
    Date
    2022-12-30
    
    Metadata
    Show full item record
    Abstract
    Electric vehicles (EVs) always integrate into the utility grid via power electronics interfaces like voltage source converters (VSCs). The VSCs manage the power flow between the utility grid and the EVs in bidirectional mode depending upon various conditions. However, the smooth transition of the bidirectional mode depends upon the controller used to drive the references of the VSC. In this paper, the transient performance of the VSC in vehicle- to-grid (V2G) and grid- to-vehicle( G 2V) EVs application is tested under voltage sag/swell using the fractional order sliding mode control (FOSMC). The primary focus is to manage the power flow between the utility grid and the EVs based on the state of charge (SOC) of the EV battery and the ampacity of the utility grid under grid transients. A simulation model with a utility grid, VSC, and an EV battery has been modeled at 180kVAR, 400V, and 50 Hz distribution feeder. The stability analysis of FOSMC has been ensured with the Lyapunov candidate function. The results of the proposed control have been compared with the classical PI control. It has been noticed that the proposed control is robust in terms of speedy tracking, fast convergence, and finest damping.
    Department
    Electrical and Computer Engineering
    Publisher
    IEEE
    Sponsor
    Effat University
    DOI
    https://doi.org/10.1109/ICIT56493.2022.9989003
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1109/ICIT56493.2022.9989003
    Scopus Count
    Collections
    Conference Papers

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.