• Login
    View Item 
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Book Chapters
    • View Item
    •   Home
    • Computer Science
    • Faculty Research and Publications
    • Book Chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Diagnosis of breast cancer from histopathological images with deep learning architectures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Hancer, Emrah
    Subasi, Abdulhamit cc
    Subject
    Breast Cancer
    Histopathological Images
    Deep Learning (DL)
    Convolutional Neural Networks (CNNs)
    Transfer Learning (TL)
    Date
    2023-01-20
    
    Metadata
    Show full item record
    Abstract
    Breast cancer is one of the most common cancer types among women worldwide. If not treated in earlier stages, it may be fatal. Therefore early diagnosis of breast cancer can minimize the human life risk. Mammograms and ultrasound imaging technologies play a crucial role to detect intraductal papillomas. However, the determination process of intraductal papillomas requires histopathological image analysis which may be mostly time-consuming, subjective, and tedious if carried out manually by the experts. To cover issue, computer-aided diagnosis (CAD) systems came into consideration. However, earlier CAD systems could not achieve significant improvement in the diagnosis process and their usage of them did not become widespread for more than a decade. Since deep learning has made so many significant advances in a wide variety of image applications, CAD systems that use its principles perform as well as the experts in stand-alone mode, and even perform better when used in support mode. In this chapter, we utilized various deep learning architectures for the detection process of breast cancer on the invasive ductal carcinoma (IDC) dataset which is one of the most popular and remarkable datasets in this field. According to the results, the pretrained VGG16 and MobileNet architectures obtain the best detection performance, reaching nearly 92% classification accuracy.
    Department
    Computer Science
    Publisher
    Academic Press
    Book title
    Applications of Artificial Intelligence in Medical Imaging.
    DOI
    https://doi.org/10.1016/B978-0-443-18450-5.00002-5
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1016/B978-0-443-18450-5.00002-5
    Scopus Count
    Collections
    Book Chapters

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.