• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Measures of acutance and shape for classification of breast tumors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ACUTANCE-TMI1997.pdf
    Size:
    231.6Kb
    Format:
    PDF
    Download
    Author
    Salem, Nema cc
    Alim, Onsy
    Desautels, J. E. Leo
    Salem, Nema cc
    Subject
    Shape measurement , Breast tumors , Biomedical measurements , Cancer , Lesions , Breast neoplasms , Density measurement , Malignant tumors , Pixel , Statistics
    Date
    1997-12
    
    Metadata
    Show full item record
    Abstract
    Most benign breast tumors possess well-defined, sharp boundaries that delineate them from surrounding tissues, as opposed to malignant tumors. Computer techniques proposed to date for tumor analysis have concentrated on shape factors of tumor regions and texture measures. While shape measures based on contours of tumor regions can indicate differences in shape complexities between circumscribed and spiculated tumors, they are not designed to characterize the density variations across the boundary of a tumor. Here, the authors propose a region-based measure of image edge profile acutance which characterizes the transition in density of a region of interest (ROI) along normals to the ROI at every boundary pixel. The authors investigate the potential of acutance in quantifying the sharpness of the boundaries of tumors, and propose its application to discriminate between benign and malignant mammographic tumors. In addition, they study the complementary use of various shape factors based upon the shape of the ROI, such as compactness. Fourier descriptors, moments, and chord-length statistics to distinguish between circumscribed and spiculated tumors. Thirty-nine images from the Mammographic Image Analysis Society (MIAS) database and an additional set of 15 local cases were selected for this study. The cases included 16 circumscribed benign, 7 circumscribed malignant, 12 spiculated benign, and 19 spiculated malignant lesions. All diagnoses were proven by pathologic examinations of resected tissue. The contours of the lesions were first marked by an expert radiologist using X-Paint and X-Windows on a SUN-SPARCstation 2 Workstation. For computation of acutance, the ROI boundaries were iteratively approximated using a split/merge and end-point adjustment technique to obtain the best-fitting polygonal approximation. The jackknife method using the Mahalanobis distance measure in the BMDP (Biomedical Programs) package was used for classification of the lesions using acutance and the shape factors as features in various combinations. Acutance alone resulted in a benign/malignant classification accuracy of 95% the MIAS cases. Compactness alone gave a circumscribed/spiculated classification rate of 92.3% with the MIAS cases. Acutance in combination with a moment-based shape measure and a Fourier descriptor-based measure gave four-group classification rate of 95% with the MIAS cases. The results indicate the importance of including lesion edge definition with shape information for classification of tumors, and that the proposed measure of acutance fills this need.
    Department
    Electrical and Computer Engineering
    Publisher
    IEEE
    Journal title
    IEEE Transactions on Medical Imaging
    DOI
    10.1109/42.650876
    ae974a485f413a2113503eed53cd6c53
    10.1109/42.650876
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.