• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) Power Forecasting

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Maha Sabban Long_Short-Term_Me ...
    Size:
    2.837Mb
    Format:
    PDF
    Download
    Author
    Salem, Nema cc
    Malik, Hebatullah
    AlSabban, Maha
    Subject
    LSTM-RNN, load forecasting, power, deep learning, artificial intelligence
    Date
    2022-02-02
    
    Metadata
    Show full item record
    Abstract
    The geographical position of the Kingdom of Saudi Arabia has significant potentials for utilizing renewable energy resources, which aligns with the country's vision for 2030. This paper proposes a solution to achieve energy sustainability by forecasting future load demands through adopting three different scenarios. We used the outsourced Individual Household Electric Power Consumption Dataset, University of California-Irvine repository, for testing our proposed system. We utilized the Long Short-term Memory-Recurrent Neural Network (LSTM-RNN) algorithm to estimate the whole house power consumption for different horizons: every 15 minutes, daily, weekly, and monthly. Next, we evaluated the performance of the system by Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and R2 score metrics. Then, we applied the Mean Absolute Percentage Error (MAPE) to find its accuracy. The results showed that the monthly forecasting interpretation scenario was the best performing model. That scenario used (n-1) months for training and the last month for testing. The scores for that model were 0.034 (MAE), 0.001 (MSE), 0.034 (RMSE), and 97.16% (accuracy). The constructed model successfully achieved its goals of predicting the active power of the household and now can be accommodated on energy applications not only in Saudi Arabia but also in any other country.
    Department
    Electrical and Computer Engineering
    Publisher
    IEEE
    DOI
    10.1109/APPEEC50844.2021.9687681
    ae974a485f413a2113503eed53cd6c53
    10.1109/APPEEC50844.2021.9687681
    Scopus Count
    Collections
    Conference Papers

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.