Show simple item record

dc.contributor.authorSalem, Nema
dc.date.accessioned2023-03-12T10:33:36Z
dc.date.available2023-03-12T10:33:36Z
dc.date.issued2022
dc.identifier.doi10.3390/s22197418en_US
dc.identifier.urihttp://hdl.handle.net/20.500.14131/576
dc.description.abstractAssisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. In vitro fertilization (IVF) is one of those assisted reproduction methods in which the sperm and eggs are combined outside the human body in a specialized environment and kept for growth. Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. The morphology of the embryological components is highly related to the success of the assisted reproduction procedure. In approximately 3–5 days, the embryo transforms into the blastocyst. To prevent the multiple-birth risk and to increase the chance of pregnancy the embryologist manually analyzes the blastocyst components and selects valuable embryos to transfer to the women’s uterus. The manual microscopic analysis of blastocyst components, such as trophectoderm, zona pellucida, blastocoel, and inner cell mass, is time-consuming and requires keen expertise to select a viable embryo. Artificial intelligence is easing medical procedures by the successful implementation of deep learning algorithms that mimic the medical doctor’s knowledge to provide a better diagnostic procedure that helps in reducing the diagnostic burden. The deep learning-based automatic detection of these blastocyst components can help to analyze the morphological properties to select viable embryos. This research presents a deep learning-based embryo component segmentation network (ECS-Net) that accurately detects trophectoderm, zona pellucida, blastocoel, and inner cell mass for embryological analysis. The proposed method (ECS-Net) is based on a shallow deep segmentation network that uses two separate streams produced by a base convolutional block and a depth-wise separable convolutional block. Both streams are densely concatenated in combination with two dense skip paths to produce powerful features before and after upsampling. The proposed ECS-Net is evaluated on a publicly available microscopic blastocyst image dataset, the experimental segmentation results confirm the efficacy of the proposed method. The proposed ECS-Net is providing a mean Jaccard Index (Mean JI) of 85.93% for embryological analysis.en_US
dc.publisherMDPIen_US
dc.subjectin vitro fertilization (IVF); artificial intelligence (AI); deep learning; embryonic analysis; embryology; blastocyst imaging; embryo component segmentation network (ECS-Net)en_US
dc.titleArtificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by in Vitro Fertilizationen_US
dc.source.journalSensorsen_US
dc.source.volume19en_US
dc.contributor.researcherExternal Collaborationen_US
dc.subject.KSAMEDen_US
dc.source.indexScopus/ISIen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.contributor.firstauthorMushtaq, Abeer


Files in this item

Thumbnail
Name:
AI in vitro fertilization ...
Size:
978.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record