• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Automated Design Error Debugging of Digital VLSI Circuits

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Automated Design Error Debugging ...
    Size:
    2.774Mb
    Format:
    PDF
    Download
    Author
    Hussein, Aziza cc
    Hanafy, M Ali
    Mohammed, Moness
    Lamya, Gaber
    Subject
    Fault Diagnosis
    Deep Learning
    Neural Networks
    
    Metadata
    Show full item record
    Abstract
    As the complexity and scope of VLSI designs continue to grow, fault detection processes in the pre-silicon stage have become crucial to guaranteeing reliability in IC design. Most fault detection algorithms can be solved by transforming them into a satisfiability (SAT) problem decipherable by SAT solvers. However, SAT solvers consume significant computational time, as a result of the search space explosion problem. This ever- increasing amount of data can be handled via machine learning techniques known as deep learning algorithms. In this paper, we propose a new approach utilizing deep learning for fault detection (FD) of combinational and sequential circuits in a type of stuck-at-faults. The goal of the proposed semi-supervised FD model is to avoid the search space explosion problem by taking advantage of unsupervised and supervised learning processes. First, the unsupervised learning process attempts to extract underlying concepts of data using Deep sparse autoencoder. Then, the supervised process tends to describe rules of classification that are applied to the reduced features for detecting different stuck-at faults within circuits. The FD model proposes good performance in terms of running time about 187 × compared to other FD algorithm based on SAT solvers. In addition, it is compared to common classical machine learning models such as Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB) classifiers, in terms of validation accuracy. The results show a maximum validation accuracy of the feature extraction process at 99.93%, using Deep sparse autoencoder for combinational circuits. For sequential circuits, stacked sparse autoencoder presents 99.95% as average validation accuracy. The fault detection process delivers around 99.6% maximum validation accuracy for combinational circuits from ISCAS’85 and 99.8% for sequential circuits from ISCAS’89 benchmarks. Moreover, the proposed FD model has achieved a running time of about 1.7x, compared to DT classifier and around 1.6x, compared to RF classifier and GB machine learning classifiers, in terms of validation accuracy in detecting faults occurred in eight different digital circuits. Furthermore, the proposed model outperforms other FD models, based on Radial Basis Function Network (RBFN), achieving 97.8% maximum validation accuracy.
    Department
    Electrical and Computer Engineering
    Publisher
    Springer US
    Journal title
    Journal of Electronic Testing
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.