• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Energy efficiency optimization in adaptive massive MIMO networks for 5G applications using genetic algorithm

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Energy efficiency optimization ...
    Size:
    591.4Kb
    Format:
    PDF
    Download
    Type
    Article
    Author
    Hussein, Aziza cc
    salah, ibrahim cc
    Subject
    Adaptive antenna
    5G networks
    Massive-MIMO
    Spectral efficiency
    Energy efficiency optimization
    Genetic Algorithm
    Date
    2022
    
    Metadata
    Show full item record
    Abstract
    Given that, the exponential pace of growth in wireless traffic has continued for more than a century, wireless communication is one of the most influential innovations in recent years. Massive Multiple-Input Multiple-Output (M-MIMO) is a promising technology for meeting the world's exponential growth in mobile data traffic, particularly in 5G networks. The most critical metrics in the massive MIMO scheme are Spectral Efficiency (SE) and Energy Efficiency (EE). For single-cell M-MIMO uplink transmission, energy and spectral-efficiency trade-offs have to be estimated by optimizing the number of base station antennas versus the number of active users. This paper proposes an adaptive optimization technique focusing on maximizing Energy Efficiency at full spectral efficiency using a Genetic Algorithm (GA) optimizer. The number of active antennas is determined according to the change in the number of active users based on the proposed GA scheme that optimizes the EE in the M-MIMO system. Simulation results show that the GA optimization technique achieved the maximum energy efficiency of the 5G M-MIMO platform and the maximum efficiency in the trade-off process.
    Publisher
    Springer Nature
    Journal title
    Optical and Quantum Electronics
    DOI
    10.1007/s11082-021-03507-5
    ae974a485f413a2113503eed53cd6c53
    10.1007/s11082-021-03507-5
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.