Show simple item record

dc.contributor.authorSidiya, Aichetou Mohamed
dc.contributor.authorAlzaher, Hanin
dc.contributor.authorAlmahdi, Razan
dc.contributor.authorElKafrawy, Passent
dc.date.accessioned2024-06-09T05:52:42Z
dc.date.available2024-06-09T05:52:42Z
dc.date.issued2024-01-16
dc.identifier.citationA. M. Sidiya, H. Alzaher, R. Almahdi and P. Elkafrawy, "From Analysis to Implementation: A Comprehensive Review for Advancing Arabic-English Machine Translation," 2024 21st Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 2024, pp. 109-114, doi: 10.1109/LT60077.2024.10469415.en_US
dc.identifier.doihttps://doi.org/10.1109/LT60077.2024.10469415en_US
dc.identifier.urihttp://hdl.handle.net/20.500.14131/1700
dc.description.abstractIn an increasingly interconnected world, the demand for accurate Arabic-English translation has surged, highlighting the complexities in handling Arabic's intricate morphology and diverse linguistic structures. This research delves into various translation models, including Convolutional Neural Networks (CNNs), LSTM, Neural Machine Translation (NMT), BERT, and innovative fusion architectures like the Transformer-CNN. Each model's strengths and limitations are scrutinized through comprehensive evaluations and comparisons, unveiling their potential to address translation challenges. The research then builds two models, the first based on LSTM and the second on BERT, and tests their performance in translating English to Arabic. The paper then conducts an in-depth analysis of the results. The comparative analysis provides insights into the landscape of Arabic-English translation models, guiding future research toward refining models, leveraging diverse datasets, and establishing standardized evaluation benchmarks to bridge existing gaps.en_US
dc.description.sponsorshipEffat Universityen_US
dc.publisherIEEEen_US
dc.subjectAnalytical models , Reviews , Refining , Morphology , Predictive models , Linguistics , Transformersen_US
dc.subjectArabic-English translation , Neural Machine Translation (NMT) , LSTM , BERTen_US
dc.titleFrom Analysis to Implementation: A Comprehensive Review for Advancing Arabic-English Machine Translationen_US
refterms.dateFOA2024-06-09T05:52:44Z
dc.contributor.researcherDepartment Collaborationen_US
dc.contributor.labVirtual Reality Laben_US
dc.subject.KSAICTen_US
dc.contributor.ugstudent3en_US
dc.contributor.alumnae0en_US
dc.title.projectData mining an NLPen_US
dc.source.indexScopusen_US
dc.contributor.departmentComputer Scienceen_US
dc.contributor.pgstudent0en_US
dc.contributor.firstauthorSidiya, Aichetou Mohamed
dc.conference.locationJeddah, KSAen_US
dc.conference.name2024 21st Learning and Technology Conference (L&T),en_US
dc.conference.date2024-01-15


Files in this item

Thumbnail
Name:
paper 020_105.pdf
Size:
911.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record