• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Book Chapters
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Book Chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Prediction of the Li-Ion Battery Capacity by Using Event-Driven Acquisition and Machine Learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Book chapter
    Author
    Mian Qaisar, Saeed cc
    AbdelGawad, Amal
    
    Metadata
    Show full item record
    Abstract
    The battery is a crucial element of modern power systems and it is utilized habitually in different vital applications such as electric vehicles, drones, avionics and mobile phones. Among various batteries technologies the Li-Ion batteries are widely used. It is mainly because of their compactness, longer life and high power capacity. On the other hand, due to the disadvantage of Li-ion batteries being expensive, their use is monitored using battery management systems (BMSs) to optimize their performance and ensure they last longer. The extensive processing resources that modern BMSs need can result in higher overhead power consumption. This study focuses on upgrading the present Li-ion BMSs through redesigning their associative data acquisition and processing chains differently. It aims at enhancing the data acquisition and estimation mechanisms for the Li-ion batteries' capacities. It utilizes a novel event-driven mechanism for extracting the intended Li-Ion cell parameters. The event-driven approach brings notable compression gain compared to fix-rate conventional counterparts. The mined attributes are onward conveyed to the robust machine learning algorithms for prediction. The 5-fold cross-validation approach is used for prediction performance evaluation. The achieved correlation coefficient and minimum Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are respectively 0.9996, 0.0038 and 0.0054 respectively. It shows the feasibility of incorporating the proposed approach in contemporary BMSs.
    Publisher
    IEEE
    DOI
    https://doi.org/10.1016/j.jksuci.2022.05.009
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1016/j.jksuci.2022.05.009
    Scopus Count
    Collections
    Book Chapters

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.