Show simple item record

dc.contributor.authorEl-Amin, Mohamed F.
dc.date.accessioned2024-05-26T05:54:21Z
dc.date.available2024-05-26T05:54:21Z
dc.date.issued2024-07-31
dc.identifier.urihttp://hdl.handle.net/20.500.14131/1692
dc.description.abstractThis chapter provides an extensive review of numerical methods tailored for solving fractional-order ordinary differential equations (ODEs), fractional partial differential equations (FPDEs), and systems of such equations. We discuss several numerical schemes, including explicit and implicit finite difference, Galerkin and mixed finite element, spectral element methods, and meshless methods, highlighting their application to both time and space fractional-order PDEs. Starting with the adaptation of classical numerical techniques, such as the Euler method and Runge-Kutta methods, to the fractional calculus framework, demonstrating their effectiveness through the introduction of fractional versions like the Fractional Forward Euler Method and Explicit Fractional Order Runge-Kutta (EFORK) methods, through examples and pseudocodes.en_US
dc.publisherElseiveren_US
dc.subjectFractional Ordinary Differential Equations, Fractional Partial Differential Equations, Numerical Methods, Fractional Finite Difference Method, Fractional Finite Element Method, Spectral Method, Meshless Method, Fractional Euler Method, Fractional Order Runge-Kutta Methoden_US
dc.titleChapter 5: Numerical Methods for Solving Fractional PDEs in the Book: Fractional Modelling of Fluid Flow and Transport Phenomenaen_US
dc.source.booktitleFractional Modelling of Fluid Flow and Transport Phenomenaen_US
dc.contributor.researcherNo Collaborationen_US
dc.contributor.labEnergy Laben_US
dc.subject.KSAMTHen_US
dc.contributor.ugstudent0en_US
dc.contributor.alumnae0en_US
dc.source.indexScopusen_US
dc.contributor.departmentNSMTUen_US
dc.contributor.pgstudent0en_US
dc.contributor.firstauthorEl-Amin, Mohamed F.


This item appears in the following Collection(s)

Show simple item record