Anwendung von Wavelet-Zerlegung und maschinellem Lernen für die sEMG-Signalbasierte Gestenerkennung
Subject
Assistive technologiesGesture recognition
Surface Electromyogram (sEMG)
Signal Processing
Artificial Intelligence
Date
2024-06
Metadata
Show full item recordAbstract
In German Language: Amputierte auf der ganzen Welt haben begrenzten Zugang zu hochwertigen intelligenten Prothesen. Die korrekte Erkennung von Gesten ist eine der schwierigsten Aufgaben im Kontext der Entwicklung von auf Oberflächen-Elektromyographie (sEMG) basierenden Prothesen. Dieses Kapitel zeigt eine vergleichende Untersuchung mehrerer auf maschinellem Lernen basierender Algorithmen zur Identifizierung von Handgesten. Der erste Schritt im Prozess ist die Datenerfassung aus dem sEMG-Gerät, gefolgt von der Merkmalsextraktion. Anschließend werden zwei robuste maschinelle Lernalgorithmen auf den extrahierten Merkmalsatz angewendet, um ihre Vorhersagegenauigkeit zu vergleichen. Die mittlere Gaußsche Support Vector Machine (SVM) funktioniert unter allen Bedingungen besser als der K-nearest neighbor. Verschiedene Parameter werden für den Leistungsvergleich verwendet, darunter F1-Score, Genauigkeit, Präzision und Kappa-Index. Die vorgeschlagene Methode zur Erkennung von Handgesten, basierend auf sEMG, wird gründlich untersucht und die Ergebnisse haben eine vielversprechende Leistung gezeigt. In jedem Fall kann ein Fehlverhalten bei der Merkmalsextraktion die Erkennungsgenauigkeit verringern. Die tiefgreifenden Lernmethoden werden verwendet, um eine hohe Präzision zu erreichen. Daher berücksichtigt das vorgeschlagene Design alle Aspekte bei der Verarbeitung des sEMG-Signals. Das System sichert eine höchste Klassifizierungsgenauigkeit von 92,2 % für den Fall des Gaußschen SVM-Algorithmus.Department
Electrical and Computer EngineeringPublisher
SpringerBook title
Fortschritte in Der Nicht-Invasiven Biomedizinischen Signalverarbeitung Mit MLae974a485f413a2113503eed53cd6c53
https://books.google.fr/books/about/Fortschritte_in_Der_Nicht_Invasiven_Biom.html?id=7Ypi0AEACAAJ&redir_esc=y