Fortschritte in Der Nicht-Invasiven Biomedizinischen Signalverarbeitung Mit ML
Abstract
In German Language: Dieses Buch stellt die modernen technologischen Fortschritte und Revolutionen im biomedizinischen Sektor vor. Fortschritte in der zeitgenössischen Sensorik, dem Internet der Dinge (IoT) und bei Maschinenlernalgorithmen und -architekturen haben neue Ansätze im mobilen Gesundheitswesen eingeführt. Eine kontinuierliche Beobachtung von Patienten mit kritischer Gesundheitssituation ist erforderlich. Sie ermöglicht die Überwachung ihres Gesundheitszustandes während alltäglicher Aktivitäten wie Sport, Gehen und Schlafen. Dank moderner IoT-Rahmenbedingungen und drahtloser biomedizinischer Implantate, wie Smartphones, Smartwatches und Gürtel, ist dies realisierbar. Solche Lösungen befinden sich derzeit in der Entwicklung und in Testphasen durch Gesundheits- und Regierungsinstitutionen, Forschungslabore und biomedizinische Unternehmen. Die biomedizinischen Signale wie Elektrokardiogramm (EKG), Elektroenzephalogramm (EEG), Elektromyographie (EMG), Phonokardiogramm (PCG), bei chronisch-obstruktiver Lungenkrankheit (COP) und Elektrookulographie (EoG), Photoplethysmographie (PPG), Positronenemissionstomographie (PET), Magnetresonanztomographie (MRI) und Computertomographie (CT) werden nicht-invasiv erfasst, gemessen und über die biomedizinischen Sensoren und Gadgets verarbeitet. Diese Signale und Bilder repräsentieren die Aktivitäten und Zustände des menschlichen kardiovaskulären, neuralen, visuellen und zerebralen Systems. Eine Mehrkanalerfassung dieser Signale und Bilder mit einer angemessenen Granularität ist für eine effektive Überwachung und Diagnose erforderlich. Sie erzeugt ein großes Datenvolumen, und seine Analyse ist manuell nicht machbar. Daher sind automatisierte Gesundheitssysteme in der Entwicklung. Diese Systeme basieren hauptsächlich auf der Erfassung und Sensorik von biomedizinischen Signalen und Bildern, Vorverarbeitung, Merkmalsextraktion und Klassifizierungsstufen. Die zeitgenössischen biomedizinischen Signal-Sensorik, Vorverarbeitung, Merkmalsextraktion und intelligente maschinelle und tiefgreifende Lernalgorithmen für die Klassifizierung werden beschrieben.Department
Electrical and Computer EngineeringPublisher
Springerae974a485f413a2113503eed53cd6c53
https://books.google.fr/books/about/Fortschritte_in_Der_Nicht_Invasiven_Biom.html?id=7Ypi0AEACAAJ&redir_esc=y