Prediction of Adsorption and Desorption Isotherms for Atmospheric Water Harvesting
Abstract
This study improves the mathematical modeling for the potential of atmospheric water harvesting (AWH) using desiccant materials. This research is crucial in highlighting the sustainable water management strategies of AWH systems in converting atmospheric moisture into a vital water source. The primary focus of our research methodology was the analytical derivation of sorption isotherms, essential for the hygrothermal simulation of desiccant materials. This was accomplished through the application of two established models, namely, the Guggenheim-Anderson-de Boer (GAB) and Van Genuchten (VG). Experimental data on various anhydrous salts from existing literature have been used. An in-depth comparative analysis of these models reveals that the VG model aligns more closely with the experimental data, thus asserting its superiority in enhancing the selection and efficiency of desiccant materials in AWH systems. By confirming the VG model’s superiority in accurately modeling sorption isotherms, our research not only improves the model of AWH systems but also, importantly, contributes to the development of advanced water harvesting technologies.Department
Master of Science in Energy EngineeringPublisher
IEEEae974a485f413a2113503eed53cd6c53
10.1109/LT60077.2024.10469136