Battery Management System for Enhancing the Performance and Safety of Lithium-Ion Batteries
Abstract
Battery packs integrated into the grid offer a promising solution for energy storage, but their efficient operation requires precise monitoring and control, which is achieved through Battery Management Systems (BMS). This paper proposes a temperature-dependent second-order RC equivalent circuit model to reflect the battery’s dynamic characteristics accurately. Then, a novel BMS design, incorporating Extended Kalman Filtering (EKF), a constant current-constant voltage (CCCV) charging, and a passive balancing algorithm to estimate the battery state of charge (SOC), balance voltage levels, and monitor thermal characteristics. The research also includes a comprehensive simulation study conducted in SIMULINK with the Simscape toolbox to assess the effectiveness of the analyzed BMS. The simulation results demonstrate the effictiveness of the proposed BMS design in monitoring the battery pack’s state, maintains cell balancing, estimates SOC, and keeps the temperature and current levels within safe limits. This model can help guide a more efficient and accurate BMS design for future studies.Department
Electrical and Computer EngineeringPublisher
IEEEae974a485f413a2113503eed53cd6c53
https://doi.org/10.1109/LT60077.2024.10468566