Maximum Power Point Tracking Controller with Neural Gas Network PID of Boost Converter
Abstract
Each photovoltaic (PV) system demonstrates a specific point on the current-voltage (IV) curve characteristics where the power generated reaches its maximum value which is referred to as the maximum power point (MPP). The maximum power point tracking (MPPT) system is designed to sample the output of solar cells and adjust the load in order to achieve maximum power output under various environmental conditions. In this paper, a design of a boost converter with MPPT based on a PID controller is proposed. The goal is to optimize the extraction of the highest attainable power from photovoltaic systems. The extracted power is subsequently directed to the load through a boost converter, which elevates the voltage to the necessary level. The PID controller is calibrated by Neural Gas Network (NGN) and utilized to achieve a consistent output voltage irrespective of fluctuations in the power source or the connected load. Moreover, an NGN technique is applied to generate the optimal PID parameters before using the PID. The comprehensive system design depicted has been simulated using MATLAB Simulink to verify the functionality of the system.Department
Electrical and Computer EngineeringPublisher
IEEEae974a485f413a2113503eed53cd6c53
10.1109/AEES59800.2023.10469487