Analytical solutions for harvesting atmospheric water using desiccant materials
Abstract
Atmospheric water generation using desiccant materials is a promising technology for producing clean drinking water in water-scarce regions. While experimental research on this topic has been extensive, modeling and simulation research are still in their nascent stages. The development of accurate models and simulations is crucial for predicting performance and refining system design. This paper presents analytical solutions for predicting and improving the behavior of water absorption and desorption by the calcium chloride (CaCl2) desiccant, which is commonly used in atmospheric water generation systems. The model considers several physical effects, such as mass transfer, and diffusion. The model considers a linear relationship between the collected water content and relative humidity. Based on this assumption the model has been solved analytically for different cases of boundary conditions including, Dirichlet boundary conditions and Dirichlet–Neumann boundary conditions. Several physical scenarios have been calculated and the results have been discussed.Department
NSMTUPublisher
SpringerJournal title
Sustainable Water Resources Managementae974a485f413a2113503eed53cd6c53
https://doi.org/10.1007/s40899-023-00942-y