• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorProfilesView

    My Account

    Login

    Statistics

    Display statistics

    Automated Categorization of Multiclass Welding Defects Using the X-ray Image Augmentation and Convolutional Neural Network

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Automated Categorization of ...
    Size:
    985.1Kb
    Format:
    PDF
    Download
    Author
    Mian Qaisar, Saeed cc
    Dalila Say
    Salah Zidi
    Krichen Moez
    Subject
    CNN
    Deep Learning
    Data Augmentation
    Segmentation
    Date
    2023-07-14
    
    Metadata
    Show full item record
    Abstract
    The detection of weld defects by using X-rays is an important task in the industry. It requires trained specialists with the expertise to conduct a timely inspection, which is costly and cumbersome. Moreover, the process can be erroneous due to fatigue and lack of concentration. In this context, this study proposes an automated approach to identify multi-class welding defects by processing the X-ray images. It is realized by an intelligent hybridization of the data augmentation techniques and convolutional neural network (CNN). The proposed data augmentation mainly performs random rotation, shearing, zooming, brightness adjustment, and horizontal flips on the intended images. This augmentation is beneficial for the realization of a generalized trained CNN model, which can process the multi-class dataset for the identification of welding defects. The effectiveness of the proposed method is confirmed by testing its performance in processing an industrial dataset. The intended dataset contains 4479 X-ray images and belongs to six groups: cavity, cracks, inclusion slag, lack of fusion, shape defects, and normal defects. The devised technique achieved an average accuracy of 92%. This indicates that the approach is promising and can be used in contemporary solutions for the automated detection and categorization of welding defects.
    Department
    Electrical and Computer Engineering
    Publisher
    MDPI
    Journal title
    Sensors
    DOI
    https://doi.org/10.3390/s23146422
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.3390/s23146422
    Scopus Count
    Collections
    Articles

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.