• Login
    View Item 
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    •   Home
    • Electrical and Computer Engineering
    • Faculty Research and Publications
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Effat University RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorThis CollectionPublication DateAuthorsTitlesSubjectsPublisherJournalTypeDepartmentSupervisorProfilesView

    My Account

    Login

    Statistics

    Display statistics

    EEG Signal based Schizophrenia Recognition by using VMD Rose Spiral Curve Butterfly Optimization and Machine Learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Sibghatullah I Khan
    Mian Qaisar, Saeed cc
    Alberto López Martínez
    Humaira Nisar
    Francisco Ferrero Martín
    Subject
    Electroencephalogram
    Segmentation
    Variational Mode Decomposition
    Metaheuristic Optimization
    Date
    2023-07-13
    
    Metadata
    Show full item record
    Abstract
    Schizophrenia is a mental illness that can negatively impact a patient's mental abilities, emotional propensities, and the standard of their private and social lives. Processing EEG data has evolved into a useful tool for tracking and identifying psychological brain states. In this framework, this paper focus on developing an automated approach for recognizing schizophrenia using non-invasive EEG signals. The EEG signals are segmented and onward decomposed by using the Variational Mode Decomposition (VMD). Each mode is termed a variational mode function (VMF). Onward, features from each intended VMF are mined based on a Rose Spiral Curve (RSC). The mined features are concatenated to present an instance. Afterward, the most pertinent features are selected using the Butterfly Optimization Algorithm (BOA). The selected feature set is conveyed to the classification module. Two classification approaches are applied in this study namely, the k-nearest neighbor (k-NN) and Random Forest (RF). The applicability is tested by using a publicly available EEG schizophrenia dataset. The highest accuracy of 89.0 % is secured for the case of RF.
    Department
    Electrical and Computer Engineering
    Publisher
    IEEE
    DOI
    10.1109/I2MTC53148.2023.10176074
    ae974a485f413a2113503eed53cd6c53
    10.1109/I2MTC53148.2023.10176074
    Scopus Count
    Collections
    Conference Papers

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.