The variance entropy multi-level thresholding method
Kittaneh, Omar
Kittaneh, Omar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper proposes a new multi-level entropy-based image thresholding method. The key principle of the proposed method depends on the minimum of the variance entropy. The method is fully automated at all stages of implementation. It produces competitive segmentation results as compared to the generalized Otsu’s method, which is one of the most powerful multi-level thresholding techniques that requires human intervention. In addition, the method significantly outperforms the generalized Kapur’s method, which is one of the benchmarking entropy-based thresholding techniques. The method is successfully applied to several scenarios of trial histograms and real images, and its performance is checked using a variety of classification measures and quality metrics.
Department
Publisher
Sponsor
Image thresholding; variance entropy, truncated distributions